【題目】在直三棱柱ABC﹣A1B1C1中,AB=AC=1,∠BAC=90°,且異面直線A1B與B1C1所成的角等于60°,設(shè)AA1=a.
(1)求a的值;
(2)求平面A1BC1與平面B1BC1所成的銳二面角的大。
【答案】
(1)∵BC∥B1C1,∴∠A1BC就是異面直線A1B與B1C1所成的角,
即∠A1BC=60°,(2分)
連接A1C,又AB=AC,則A1B=A1C∴△A1BC為等邊三角形,
由AB=AC=1,∠BAC=90° ,
∴
(2)解:取A1B的中點(diǎn)E,連接B1E,過(guò)E作EF⊥BC1于F,
連接B1F,B1E⊥A1B,A1C1⊥B1EB1E⊥平面A1BC1B1E⊥BC1
又EF⊥BC1,所以BC1⊥平面B1EF,即B1F⊥BC1,
所以∠B1FE就是平面A1BC1與平面B1BC1所成的銳二面角的平面角.
在△B1EF中,∠B1EF=90°, , ,∴ ∠B1FE=60°,
因此平面A1BC1與平面B1BC1所成的銳二面角的大小為60°.
【解析】(1)將B1C1平移到BC,∠A1BC就是異面直線A1B與B1C1所成的角,在三角形A1BA內(nèi)建立等式,解之即可;(2)取A1B的中點(diǎn)E,連接B1E,過(guò)E作EF⊥BC1于F,連接B1F,B1E⊥A1B,A1C1⊥B1E,得到∠B1FE就是平面A1BC1與平面B1BC1所成的銳二面角的平面角,在△B1EF中解出此角即可.
【考點(diǎn)精析】本題主要考查了平面與平面之間的位置關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握兩個(gè)平面平行沒(méi)有交點(diǎn);兩個(gè)平面相交有一條公共直線才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)a,b∈R,記max{a,b}= ,則函數(shù)f(x)=max{|x+1|,x+2}(x∈R)的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+4[sin(θ+ )]x﹣2,θ∈[0,2π]].
(1)若函數(shù)f(x)為偶函數(shù),求tanθ的值;
(2)若f(x)在[﹣ ,1]上是單調(diào)函數(shù),求θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(2)若a是從區(qū)間[0,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩所學(xué)校高三年級(jí)分別有1 200人,1 000人,為了了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)六校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 3 | 4 | 8 | 15 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 15 | x | 3 | 2 |
乙校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 1 | 2 | 8 | 9 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 10 | 10 | y | 3 |
則x,y的值分別為( )
(A)、12,7 (B)、 10,7 (C)、 10,8 (D)、 11,9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為測(cè)量山高M(jìn)N,選擇A和另一座山的山頂C為測(cè)量觀測(cè)點(diǎn).從A點(diǎn)測(cè)得 M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測(cè)得∠MCA=60°.已知山高BC=100m,則山高M(jìn)N=m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:函數(shù) 在(﹣∞,+∞)上有極值,命題q:雙曲線 的離心率e∈(1,2).若p∨q是真命題,p∧q是假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=﹣ x3+ x2+2ax.
(1)當(dāng)a=1時(shí),求f(x)在[1,4]上的最大值和最小值.
(2)若f (x)在( ,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com