設(shè)函數(shù)fx)=ab0),求fx)的單調(diào)區(qū)間,并證明fx)在其單調(diào)區(qū)間上的單調(diào)性.

 

答案:
解析:

解: 函數(shù)的定義域為(-∞,-b(-b,+∞),

f(x)在(-∞,-b)內(nèi)是減函數(shù),在(-b,+∞)內(nèi)也是減函數(shù).

證明:f(x)在(-b,+∞)上是減函數(shù),

,∈(-b,+∞)且,那么 

∵  ab>0,>0,>0, 

∴  >0,即f(x)在(-b,+∞)內(nèi)是減函數(shù),

同理可證f(x)在(-∞,-b)內(nèi)是減函數(shù).

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知集合M是滿足下列性質(zhì)的函數(shù)fx)的全體:

存在非零常數(shù)T,對任意xR,有fxT)=Tfx)成立.

 。)函數(shù)fx)=x是否屬于集合M?說明理由;

 。)設(shè)函數(shù)fx)=a0a≠1)的圖像與yx的圖像有公共點,

證明:fx)=M;

 。)若函數(shù)fx)=sinkxM,求實數(shù)k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

設(shè)函數(shù)fx)=ab0),求fx)的單調(diào)區(qū)間,并證明fx)在其單調(diào)區(qū)間上的單調(diào)性.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

設(shè)函數(shù)fx)=a0,且a≠1),f2)=4,則      

  Af(-2)>f(-1

  Bf(-1)>f(-2

  Cf1)>f2

  Df(-2)>f2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

設(shè)函數(shù)fx)=a0,且a≠1),f2)=4,則      

  Af(-2)>f(-1

  Bf(-1)>f(-2

  Cf1)>f2

  Df(-2)>f2

 

查看答案和解析>>

同步練習(xí)冊答案