△ABC中,AC=3,BC=4,AB=5,O是其內(nèi)切圓的圓心,則
OA
OB
=
-5
-5
分析:根據(jù)題意,可得△ABC是以AB為斜邊的直角三角形,內(nèi)切圓半徑r=
1
2
(AC+BC-AB)=1.再以C為原點(diǎn),CA、CB所在直線為x、y軸,建立如圖坐標(biāo)系,算出向量
OA
、
OB
坐標(biāo),即可算出
OA
OB
的值.
解答:解:∵△ABC中,AC=3,BC=4,AB=5,
∴AC2+BC2=25=AB2,得AC⊥BC
以C為原點(diǎn),CA、CB所在直線為x、y軸,建立如圖坐標(biāo)系
可得A(3,0),B(0,4),
由此可得△ABC內(nèi)切圓的半徑為r=
1
2
(AC+BC-AB)=1
∴內(nèi)切圓心O(1,1),
可得
OA
=(2,-1),
OB
=(-1,3)
OA
OB
=2×(-1)+(-1)×3=-5
故答案為:-5
點(diǎn)評(píng):本題給出直角三角形的三條邊的長(zhǎng)度,求由內(nèi)心指向兩個(gè)銳角頂點(diǎn)向量的數(shù)量積,著重考查了三角形內(nèi)切圓的性質(zhì)和向量數(shù)量積的運(yùn)算等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AC=
3
,∠A=45°,∠C=75°,則BC的長(zhǎng)度是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,AC=3,BC=4,AB=5.P在平面ABC的射影為AB的中點(diǎn)D.
(1)求證:AB與PC不垂直;
(2)當(dāng)∠APC=60°時(shí),
①求三棱錐P-ABC的體積;
②求二面角P-AC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AC=3,AB=5,∠A=120°;
(1)求BC的長(zhǎng);
(2)求△ABC的邊BC上的高AM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黔東南州一模)△ABC中,AC=3,BC=4,AB=5,O是其外接圓的圓心,則
OA
OC
=
7
4
7
4

查看答案和解析>>

同步練習(xí)冊(cè)答案