設橢圓()的長半軸的長等于焦距,且為它的右準線。
(I)求橢圓的方程;
(II)過定點(,為常數(shù))作斜率為()的直線與橢圓交于不同的兩點A、B,問在軸上是否存在一點N,使直線NA與NB的傾斜角互補?若存在,求出N點坐標,若不存在,請說明理由。
科目:高中數(shù)學 來源: 題型:
(14分)設A、B分別為橢圓的左、右頂點,()為橢圓上一點,橢圓的長半軸的長等于焦距.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,若直線AP,BP分別與橢圓相交于異于A、B的點M、N,證明在以MN為直徑的圓內(nèi).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(14分)設A、B分別為橢圓的左、右頂點,()為橢圓上一點,橢圓的長半軸的長等于焦距.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,若直線AP,BP分別與橢圓相交于異于A、B的點M、N,
求證:為鈍角.
查看答案和解析>>
科目:高中數(shù)學 來源:河北省高三下學期第二次考試數(shù)學(文) 題型:解答題
(本題滿分12分)已知橢圓的離心率為,
直線與以原點為圓心、以橢圓的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左焦點為F1,右焦點為F2,直線過點F1,且垂直于橢圓的長軸,動直
線垂直于點P,線段PF2的垂直平分線交于點M,求點M的軌跡C2的方程;
(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點F2,求四邊形ABCD的面積
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:河北省高三下學期第二次考試數(shù)學(文) 題型:解答題
(本題滿分12分)已知橢圓的離心率為,
直線與以原點為圓心、以橢圓的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左焦點為F1,右焦點為F2,直線過點F1,且垂直于橢圓的長軸,動直
線垂直于點P,線段PF2的垂直平分線交于點M,求點M的軌跡C2的方程;
(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點F2,求四邊形ABCD的面積
的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com