【題目】已知集合A={x|(a﹣1)x2﹣x+2=0}有且只有一個元素,則a= .
【答案】1或
【解析】解:若集合A={x|(a﹣1)x2﹣x+2=0},則方程(a﹣1)x2﹣x+2=0有且只有一個解
當(dāng)a﹣1=0,即a=1時,方程可化為﹣x+2=0,滿足條件;
當(dāng)a≠1時,二次方程(a﹣1)x2﹣x+2=0有且只有一個解
則△=1﹣8(a﹣1)=0,解得a=
所以滿足條件的a的值為1或
所以答案是1或 .
【考點精析】認(rèn)真審題,首先需要了解集合的表示方法-特定字母法(①自然語言法:用文字?jǐn)⑹龅男问絹砻枋黾?②列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合.③描述法:{|具有的性質(zhì)},其中為集合的代表元素.④圖示法:用數(shù)軸或韋恩圖來表示集合).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ) 當(dāng)a=-1時,求證: ;
(Ⅱ) 對任意,存在,使成立,求a的取值范圍.(其中e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省2016年高中數(shù)學(xué)學(xué)業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等級劃分標(biāo)準(zhǔn)如下:85分及以上,記為A等;分?jǐn)?shù)在[70,85)內(nèi),記為B等;分?jǐn)?shù)在[60,70)內(nèi),記為C等;60分以下,記為D等.同時認(rèn)定A,B,C為合格,D為不合格.已知某學(xué)校學(xué)生的原始成績均分布在[50,100]內(nèi),為了了解該校學(xué)生的成績,抽取了50名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出樣本頻率分布直方圖如圖所示.
(Ⅰ)求圖中x的值,并根據(jù)樣本數(shù)據(jù)估計該校學(xué)生學(xué)業(yè)水平測試的合格率;
(Ⅱ)在選取的樣本中,從70分以下的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行調(diào)研,用X表示所抽取的3名學(xué)生中成績?yōu)镈等級的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求出圓的直角坐標(biāo)方程;
(2)已知圓與軸相交于, 兩點,直線: 關(guān)于點對稱的直線為.若直線上存在點使得,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】面對全球范圍內(nèi)日益嚴(yán)峻的能源形勢與環(huán)保壓力,環(huán)保與低碳成為今后汽車發(fā)展的一大趨勢,越來越多的消費者對新能源汽車表示出更多的關(guān)注,某研究機(jī)構(gòu)從汽車市場上隨機(jī)抽取N輛純電動汽車調(diào)查其續(xù)航里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)航里程全部介于100公里和450公里之間,根據(jù)調(diào)查數(shù)據(jù)形成了如圖所示頻率分布表及頻率分布直方圖.
頻率分布表
分組 | 頻數(shù) | 頻率 |
[100,150) | 1 | 0.05 |
[150,200) | 3 | 0.15 |
[200,250) | x | 0.1 |
[250,300) | 6 | 0.3 |
[300,350) | 4 | 0.2 |
[350,400) | 3 | y |
[400,450] | 1 | 0.05 |
合計 | N | 1 |
(1)試確定頻率分布表中x,y,N的值,并補(bǔ)全頻率分布直方圖;
(2)若從續(xù)航里程在[200,250)及[350,400)的車輛中隨機(jī)抽取2輛車,求兩輛車?yán)m(xù)航里程都在[350,400)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中,且.
(1)求值;
(2)若,為自然對數(shù)的底數(shù),求證:當(dāng)時,;
(3)若函數(shù)為上的單調(diào)函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為豐富居民節(jié)日活動,組織了“迎新春”象棋大賽,已知由1,2,3號三位男性選手和4,5號兩位女性選手組成混合組參賽.已知象棋大賽共有三輪,設(shè)三位男性選手在一至三輪勝出的概率依次是;兩名女性選手在一至三輪勝出的概率依次是.
(Ⅰ)若該組五名選手與另一組選手進(jìn)行小組淘汰賽,每名選手只比賽一局,共五局比賽,求該組兩名女性選手的比賽次序恰好不相鄰的概率;
(Ⅱ)若一位男性選手因身體不適退出比賽,剩余四人參加個人比賽,比賽結(jié)果相互不影響,設(shè)表示該組選手在四輪中勝出的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,設(shè)點,且=2.
(1)求橢圓C的方程;
(2)已知四邊形MNPQ的四個頂點均在曲線C上,且MQ∥NP,MQ⊥x軸,若直線MN和直線QP交于點S(4,0).判斷四邊形MNPQ兩條對角線的交點是否為定點?若是,求出定點坐標(biāo);若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com