精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,曲線的參數方程為(為參數),以原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,

(Ⅰ)求曲線的普通方程和曲線的直角坐標方程;

(Ⅱ)設點,曲線與曲線交于兩點,求的值.

【答案】(),()

【解析】

()由代入法消去參數,可得曲線的普通方程為,再由極坐標與直角坐標的互化公式,即可求解曲線的直角坐標方程;

()將直線的參數代入曲線的直角坐標方程,得,由韋達定理可得,根據參數幾何意義,即求解的值.

()曲線的參數方程為(為參數)

由代入法消去參數,可得曲線的普通方程為

曲線的極坐標方程為,得,即為,

整理可得曲線的直角坐標方程為

()(為參數),代入曲線的直角坐標方程,

,利用韋達定理可得

所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點在平行于軸的直線上,且軸的交點為,動點滿足平行于軸,且.

1)求出點的軌跡方程.

2)設點,,求的最小值,并寫出此時點的坐標.

3)過點的直線與點的軌跡交于.兩點,求證.兩點的橫坐標乘積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論函數的單調性;

2)若函數處取得極值,不等式恒成立,求實數的取值范圍;

3)當時,證明不等式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓關于直線對稱,圓心C在第二象限,半徑為

(1)求圓C的方程.

(2)是否存在直線l與圓C相切,且在x軸、y軸上的截距相等?若存在,寫出滿足條件的直線條數(不要求過程);若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】軸交于、兩點(點在點的左側),是分別過、點的圓的切線,過此圓上的另一個點點是圓上任一不與重合的動點)作此圓的切線,分別交、、兩點,且、兩直線交于點

)設切點坐標為,求證:切線的方程為

設點坐標為,試寫出的關系表達式(寫出詳細推理與計算過程)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程為,過點的直線與圓交于兩點

1)若,求直線的方程;

2)若直線軸交于點,設,R,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的幾何體中,垂直于梯形所在的平面,的中點,,四邊形為矩形,線段于點.

(1)求證:平面

(2)求二面角的正弦值;

(3)在線段上是否存在一點,使得與平面所成角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校研究性學習小組對該校高三學生的視力情況進行調查,在高三的全體1000名學生中隨機抽取了100名學生的體檢表,并得到如下直方圖:

年級名次/是否近視

1-50

951-1000

近視

41

32

不近視

9

18

(1)若直方圖中后四組的頻數成等差數列,試估計全年級視力在5.0以下的人數;

(2)學習小組成員發(fā)現,學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對年級名次在1~50名和951~1000名的學生進行了調查,得到如上述表格中數據,根據表中的數據,能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關系;

(3)在(2)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取了9人,進一步調查他們良好的護眼習慣,并且在這9人中任取3人,記名次在1~50名的學生人數為X,求X的分布列和數學期望.

附:

0.10

0.05

0.025

0.010

0.005

k

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

同步練習冊答案