(09年長沙一中第八次月考理)(13分)若存在實常數(shù)和,使得函數(shù)和對其定義域上的任意實數(shù)分別滿足:和,則稱直線為和的“隔離直線”.已知,(其中為自然對數(shù)的底數(shù)).
(Ⅰ)求的極值;
(Ⅱ) 函數(shù)和是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.解析:(Ⅰ) ,
. …………………………2分
當時,. …………………………3分
當時,,此時函數(shù)遞減;
當時,,此時函數(shù)遞增;
∴當時,取極小值,其極小值為. …………………………6分
(Ⅱ)解法一:由(Ⅰ)可知函數(shù)和的圖象在處有公共點,因此若存在和的隔離直線,則該直線過這個公共點. …………………………7分
設隔離直線的斜率為,則直線方程為,即
. …………………………8分
由,可得當時恒成立.
,
由,得. …………………………10分
下面證明當時恒成立.
令,則
, …………………………11分
當時,.
當時,,此時函數(shù)遞增;
當時,,此時函數(shù)遞減;
∴當時,取極大值,其極大值為.
從而,即恒成立.………13分
∴函數(shù)和存在唯一的隔離直線. ………………………14分
解法二: 由(Ⅰ)可知當時, (當且當時取等號) .……7分
若存在和的隔離直線,則存在實常數(shù)和,使得
和恒成立,
令,則且
,即. …………………………8分
后面解題步驟同解法一.科目:高中數(shù)學 來源: 題型:
(09年長沙一中第八次月考理)(13分)已知直線L:x-y-3=0,拋物線C的頂點在原點,焦點在軸正半軸上,S是拋物線C上任意一點,T是直線L上任意一點,若|ST|的最小值為d>0時,點S的橫坐標為2.
(1)求拋物線方程以及d的值;
(2)過拋物線C的對稱軸上任一點作直線與拋物線交于兩點,點是點關于原點的對稱點.設點分有向線段所成的比為,
證明:;
(3)設R為拋物線準線上任意一點,過R作拋物線的兩條切線,切點分別為M,N,直線MN是否恒過一定點?若恒過定點,請指出定點;若不恒過定點,請說明理由。查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(09年長沙一中第八次月考理)(本小題滿分12分)如圖,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EF//AC,∠CAF=∠AFE=90º,AB=,AF=FE=1.
(1)求證EC//平面BDF;
(2)求二面角A-DF-B的大小;
(3)試在線段AC上確定一點P,使得PF與BC所成的角是60°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(09年長沙一中第八次月考理)(本小題滿分12分)我校文化體育藝術節(jié)的乒乓球決賽在甲乙兩人中進行,比賽規(guī)則如下:比賽采用7局4勝制(先勝4局這獲勝即比賽結束),在每一局比賽中,先得11分的一方為勝方;比賽沒有平局,10平后,先連得2分的一方為勝方
(1)根據(jù)以往戰(zhàn)況,每局比賽甲勝乙的概率為0.6,設比賽的場數(shù)為,求的分布列和期望;
(2)若雙方在每一分的爭奪中甲勝的概率也為0.6,求決勝局中甲在以8:9落后的情況下最終以12:10獲勝的概率。查看答案和解析>>