如圖2,四邊形為矩形,⊥平面,,作如圖3折疊,折痕,其中點(diǎn)分別在線段上,沿折疊后點(diǎn)疊在線段上的點(diǎn)記為,并且⊥.(1)證明:⊥平面;
(2)求三棱錐的體積.
(1)見解析(2)
解析試題分析:(1)要證CF⊥平面MDF,只需證CF⊥MD,且CF⊥MF即可;由PD⊥平面ABCD,得出平面PCD⊥平面ABCD,即證MD⊥平面PCD,得CF⊥MD;(2)求出△CDE的面積S△CDE,對應(yīng)三棱錐的高M(jìn)D,計(jì)算它的體積VM-CDE.
試題解析:(1)證明:∵PD⊥平面ABCD,PD?平面PCD,
∴平面PCD⊥平面ABCD;
又平面PCD∩平面ABCD=CD,MD?平面ABCD,MD⊥CD,
∴MD⊥平面PCD,CF?平面PCD,∴CF⊥MD;
又CF⊥MF,MD、MF?平面MDF,MD∩MF=M,
∴CF⊥平面MDF;
(2)∵CF⊥平面MDF,∴CF⊥DF,
又易知∠PCD=60°,∴∠CDF=30°,∴CF=CD=;
∵EF∥DC,∴,即,∴,∴,,
=,
∴
考點(diǎn):空間線面垂直、面面垂直的判定與性質(zhì),空間幾何體的體積計(jì)算,邏輯推論證能力,運(yùn)算求解能力
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB∥DC,
.
(Ⅰ)求證:CD⊥平面ADD1A1;
(Ⅱ)若直線AA1與平面AB1C所成角的正弦值為,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如下圖所示,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(2011•重慶)如圖,在四面體ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1
(Ⅰ)求四面體ABCD的體積;
(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M為棱PB的中點(diǎn).
(1)證明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知棱長為1的正方體ABCD-A1B1C1D1中,E、F分別是B1C1和C1D1的中點(diǎn),點(diǎn)A1到平面DBEF的距離 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com