(文科)若函數(shù)的定義域和值域均為,則的范圍是____________。

 

【答案】

【解析】

試題分析:方程有兩個(gè)不同正根,函數(shù)相切時(shí),由對(duì)數(shù)函數(shù)性質(zhì)知。填

考點(diǎn):本題考查了函數(shù)的單調(diào)性

點(diǎn)評(píng):此類(lèi)問(wèn)題常常運(yùn)用對(duì)數(shù)的單調(diào)性分類(lèi)討論,或者轉(zhuǎn)化為方程的根的問(wèn)題,屬基礎(chǔ)題

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng){an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱(chēng)y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿(mǎn)足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問(wèn)數(shù)列{cn}最多有多少項(xiàng).
[理科]根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng){an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱(chēng)y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿(mǎn)足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問(wèn)數(shù)列{cn}最多有多少項(xiàng).
[理科]根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市石景山區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng){an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱(chēng)y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿(mǎn)足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問(wèn)數(shù)列{cn}最多有多少項(xiàng).
[理科]根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市靜安、楊浦、青浦、寶山區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng){an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱(chēng)y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿(mǎn)足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問(wèn)數(shù)列{cn}最多有多少項(xiàng).
[理科]根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)專(zhuān)項(xiàng)復(fù)習(xí):創(chuàng)新題(3)(解析版) 題型:解答題

定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng){an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱(chēng)y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿(mǎn)足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問(wèn)數(shù)列{cn}最多有多少項(xiàng).
[理科]根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案