⒗ 已知函數(shù),其中為實(shí)數(shù),且在處取得的極值為。
⑴求的表達(dá)式;
⑵若在處的切線方程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年貴州省五校聯(lián)盟高三第四次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分12分)
已知函數(shù),其中為實(shí)數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)是否存在實(shí)數(shù),使得對(duì)任意,恒成立?若不存在,請(qǐng)說(shuō)明理由,若存在,求出的值并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(湖北卷解析版) 題型:解答題
本小題滿(mǎn)分14分)
(Ⅰ)已知函數(shù),其中為有理數(shù),且. 求的最小值;
(Ⅱ)試用(Ⅰ)的結(jié)果證明如下命題:設(shè),為正有理數(shù). 若,則;
(Ⅲ)請(qǐng)將(Ⅱ)中的命題推廣到一般形式,并用數(shù)學(xué)歸納法證明你所推廣的命題.
注:當(dāng)為正有理數(shù)時(shí),有求導(dǎo)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省高一上學(xué)期期中數(shù)學(xué)試卷 題型:解答題
已知函數(shù)(其中為常量且)的圖像經(jīng)過(guò)點(diǎn).
(Ⅰ)試求的值;
(Ⅱ)若不等式在時(shí)恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河北省2010年高三一模模擬(三)數(shù)學(xué)理 題型:解答題
(本小題滿(mǎn)分10分)已知函數(shù)(其中為正常數(shù),)的最小正周期為.
(1)求的值;
(2)在△中,若,且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年浙江省高二下學(xué)期第一次質(zhì)量檢測(cè)數(shù)學(xué)理卷 題型:解答題
已知函數(shù),其中為參數(shù),且,
(Ⅰ)當(dāng)時(shí),判斷函數(shù)是否有極值?
(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;
(Ⅲ)若對(duì)(Ⅱ)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com