A. | $-\frac{1}{7}$ | B. | 7 | C. | $\frac{1}{7}$ | D. | -7 |
分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,tanα的值,進(jìn)而利用兩角和的正切函數(shù)公式即可計算得解.
解答 解:∵a∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,可得:tanα=-$\frac{3}{4}$,
∴tan(α+$\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$=$\frac{1-\frac{3}{4}}{1-(-\frac{3}{4})}$=$\frac{1}{7}$.
故選:C.
點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的正切函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $3\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | $4\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {-1,1} | C. | {-1,0} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<-2或a>-1 | B. | -2<a<-1 | C. | a≤-2或a≥-1 | D. | -2≤a≤-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [7,8] | B. | [7,15] | C. | [6,8] | D. | [6,15] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com