16.若函數(shù)y=(a-1)x在(-∞,+∞)上為減函數(shù),則實數(shù)a滿足( 。
A.a<1B.1<a<2C.1<a<$\sqrt{2}$D.0<a<2

分析 由題意根據(jù)指數(shù)函數(shù)的單調(diào)性可得0<a-1<1,由此求得實數(shù)a的范圍.

解答 解:∵函數(shù)y=(a-1)x在(-∞,+∞)上為減函數(shù),∴0<a-1<1,即1<a<2,
故選:B.

點評 本題主要考查指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=x3-3x,過點A(0,16)作曲線y=f(x)的切線,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和為Sn,且${S_n}=\frac{n^2}{2}+\frac{3n}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足${b_n}={a_{n+1}}-{a_n}+\frac{1}{{{a_{n+2}}•{a_n}}}$,且數(shù)列{bn}的前n項和為Tn,求證:Tn<2n+$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.-1與5的等差中項是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.給出以下四個命題:
(1)如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行,
(2)如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面
(3)如果一個平面內(nèi)的無數(shù)條直線都平行于另一個平面,那么這兩個平面互相平行
(4)如果一個平面經(jīng)過另一個平面的一條垂線,則這兩個平面垂直
其中正確的命題個數(shù)有(  )個.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如果a1-2x>ax+7(a>0,且a≠1),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=sin(2x+φ)(-π<φ<0)圖象的一條對稱軸是直線$x=\frac{π}{8}$,則φ=$-\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.給下列五個命題:
①若方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0;
②函數(shù)$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域為[-3,1];
④設(shè)函數(shù)y=f(x)的定義域為R,則函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于y軸對稱;
⑤一條曲線$y=\left\{\begin{array}{l}3-{x^2}(x∈[-\sqrt{3},\sqrt{3}])\\{x^2}-3(x∈(-∞,-\sqrt{3})∪(\sqrt{3},+∞))\end{array}\right.$和直線y=a(a∈R)的公共點個數(shù)是m,則m的值不可能是1.
其中正確命題的序號為①⑤(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知命題p:f(x)=$\sqrt{1-a•{3}^{x}}$在x∈(-∞,0]上有意義,命題q:函數(shù) y=lg(ax2-x+a ) 的定義域為R.若p∨q為真,p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案