分析 通過討論a的范圍,結合函數(shù)的單調性找到函數(shù)的最值,從而求出a的值.
解答 解:用f(x)max,f(x)min分別表示函數(shù)f(x)在[1,e]上的最大值,最小值,
當a≤1且a≠0時,由(Ⅰ)知:在[1,e]上,f(x)是減函數(shù),
所以 f(x)max=f(1)=1;
因為 對任意的x1∈[1,e],x2∈[1,e],f(x1)+f(x2)≤2f(1)=2<4,
所以對任意的x1∈[1,e],不存在x2∈[1,e],使得f(x1)+f(x2)=4;
當1<a<e時,由(Ⅰ)知:在[1,a]上,f(x)是增函數(shù),在[a,e]上,f(x)是減函數(shù),
所以 f(x)max=f(a)=alna-a+2;
因為 對x1=1,?x2∈[1,e],f(1)+f(x2)≤f(1)+f(a)=1+alna-a+2=a(lna-1)+3<3,
所以 對x1=1∈[1,e],不存在x2∈[1,e],使得f(x1)+f(x2)=4;
當a≥e時,令g(x)=4-f(x)(x∈[1,e]),
由(Ⅰ)知:在[1,e]上,f(x)是增函數(shù),進而知g(x)是減函數(shù),
所以 f(x)min=f(1)=1,f(x)max=f(e)=a-e+2,
g(x)max=g(1)=4-f(1),g(x)min=g(e)=4-f(e);
因為 對任意的x1∈[1,e],總存在x2∈[1,e],使得f(x1)+f(x2)=4,即f(x1)=g(x2),
所以$\left\{\begin{array}{l}{f(1)≥g(e)}\\{f(e)≤g(1)}\end{array}\right.$,即$\left\{\begin{array}{l}{f(1)+f(e)≥4}\\{f(e)+f(1)≤4}\end{array}\right.$,
所以 f(1)+f(e)=a-e+3=4,解得a=e+1,
綜上所述,實數(shù)a的值為e+1.
故答案為:e+1.
點評 本題考查了函數(shù)的單調性,函數(shù)的最值問題,考查導數(shù)的應用,分類討論思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2] | B. | (-∞,2) | C. | [2,+∞) | D. | [-2,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x<1} | B. | {x|x<-1} | C. | {x|-1<x<1} | D. | {x|x<-1或x>1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com