【題目】如圖所示,是正方形所在平面外一點(diǎn),在面上的正投影,

,.有以下四個(gè)命題:

(1)⊥面;(2);

(3)以作為鄰邊的平行四邊形面積是8;

(4)恰在上.

其中正確命題的個(gè)數(shù)為( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

對(duì)每一個(gè)命題逐一判斷得解.

因?yàn)?/span>CD⊥EF,CD⊥FG,EF∩FG=F,EF,FG平面EFG,所以⊥面,所以該命題是真

命題.

設(shè)四棱錐E-ABCD的內(nèi)切球的半徑為r,由題得四棱錐是棱長(zhǎng)均為2的棱錐,

所以每個(gè)側(cè)面的面積為,棱錐的高為,

所以,所以該命題是真命題.

作為鄰邊的平行四邊形面積是,所以該命題是假命題.

由題可證該四棱錐的所有棱長(zhǎng)均為2,所以恰在上.所以該命題是真命題.

故答案為:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2x+ ,若x1∈(1,2),x2∈(2,+∞),則(
A.f(x1)<0,f(x2)<0
B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)A(a,a),B(2,3),C(3,2).
(1)若向量 , 的夾角為鈍角,求實(shí)數(shù)a的取值范圍;
(2)若a=1,點(diǎn)P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上, =m +n (m,n∈R),求m﹣n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,其中a=7,若銳角A滿足f( )= ,且sinB+sinC= ,求bc的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)米布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見下表:

井號(hào)

1

2

3

4

5

6

坐標(biāo)(x,y)(km)

(2,30)

(4,40)

(5,60)

(6,50)

(8,70)

(1,y)

鉆探深度(km)

2

4

5

6

8

10

出油量(L)

40

70

110

90

160

205

(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計(jì)y的預(yù)報(bào)值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井7(1,25),若通過1、3、5、7號(hào)井計(jì)算出的的值(,精確到0.01)與(I)中b,a的值差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請(qǐng)判斷可否使用舊井?(參考公式和計(jì)算結(jié)果:,,

(Ⅲ)設(shè)出油量與勘探深度的比值k不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足an+1=an(1﹣an+1),a1=1,數(shù)列{bn}滿足:bn=anan+1 , 則數(shù)列{bn}的前10項(xiàng)和S10=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知遞增等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2和a4的等差中項(xiàng),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若 ,Sn=b1+b2+…+bn , 求使Sn+n2n+1>62成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

(Ⅰ)若圓的切線在軸和軸上的截距相等,求此切線的方程;

(Ⅱ)從圓外一點(diǎn)向該圓引一條切線,切點(diǎn)為,為坐標(biāo)原點(diǎn),且,求使取得最小值的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a3=2,前3項(xiàng)和為S3.

(1)求{an}的通項(xiàng)公式;

(2)設(shè)等比數(shù)列{bn}滿足b1a1,b4a15,求{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊(cè)答案