已知函數(shù)f(x)=2x2+m的圖象與函數(shù)g(x)=ln|x|的圖象有四個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍為
(-∞,-
1
2
 -ln2)
(-∞,-
1
2
 -ln2)
分析:利用導(dǎo)數(shù)求出求出這兩個(gè)函數(shù)的圖象在(0,+∞)上相切時(shí)切點(diǎn)的橫坐標(biāo)為x=
1
2
,再由題意可得f(
1
2

<g(
1
2
),由此求得實(shí)數(shù)m的取值范圍.
解答:解:由于函數(shù)f(x)和函數(shù)g(x)都是偶函數(shù),圖象關(guān)于y軸對(duì)稱,
故這兩個(gè)函數(shù)在(0,+∞)上有2個(gè)交點(diǎn).
當(dāng)x>0時(shí),令 h(x)=f(x)-g(x)=2x2+m-lnx,則 h′(x)=4x-
1
x

令h′(x)=0可得x=
1
2
,故這兩個(gè)函數(shù)的圖象在(0,+∞)上相切時(shí)切點(diǎn)的橫坐標(biāo)為x=
1
2

當(dāng)x=
1
2
時(shí),f(x)=
1
2
+m,g(x)=ln
1
2
=-ln2,
函數(shù)f(x)=2x2+m的圖象與函數(shù)g(x)=ln|x|的圖象有四個(gè)交點(diǎn),應(yīng)有
1
2
+m<-ln2,
由此可得 m<-
1
2
-ln2,故實(shí)數(shù)m的取值范圍為 (-∞,-
1
2
 -ln2)

故答案為 (-∞,-
1
2
 -ln2)
點(diǎn)評(píng):本題考查了根的存在性及根的個(gè)數(shù)判斷,以及函數(shù)與方程的思想,求出這兩個(gè)函數(shù)的圖象在(0,+∞)上
相切時(shí)切點(diǎn)的橫坐標(biāo)為x=
1
2
,是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案