解答:解:(1)函數(shù)的導(dǎo)數(shù)為f'(x)=6x
2-6(a+1)x+6a=6(x-1)(x-a).
①若a=1,則f'(x)=6(x-1)
2≥0恒成立,所以此時函數(shù)f(x)在R上單調(diào)遞增.
②若a>1,則由f'(x)>0得x>a或x<1,此時函數(shù)f(x)單調(diào)遞增.由f'(x)<0得1<x<a,此時函數(shù)f(x)單調(diào)遞減.
③若a<1,則由f'(x)>0得x>1或x<a,此時函數(shù)f(x)單調(diào)遞增.由f'(x)<0得a<x<1,此時函數(shù)f(x)單調(diào)遞減.
綜上,若a=1,函數(shù)f(x)在R上單調(diào)遞增.
若a>1,f(x)在(a,+∞)和(-∞,1)上單調(diào)遞增,在(1,a)上函數(shù)f(x)單調(diào)遞減.
若a<1,f(x)在(1,+∞)和(-∞,a)上單調(diào)遞增,在(a,1)上函數(shù)f(x)單調(diào)遞減.
(2)由(1)知,若a=1,函數(shù)f(x)在R上單調(diào)遞增.所以f(x)在[1,2]上的最大值為f(2)=22.
若a<1,f(x)在(1,+∞)單調(diào)遞增,所以f(x)在[1,2]上的最大值為f(2)=22.
若a>1,因為f(1)=3a+17,由f(1)=3a+17=22得,a=
.
當(dāng)a=
時,所以f(x)在[1,2]上的最大值為f(2)=22.
當(dāng)
1<a<時,f(1)<f(22),所以f(x)在[1,2]上的最大值為f(2)=22.
當(dāng)
a≥時,f(1)>f(22),所以f(x)在[1,2]上的最大值為f(1)=3a+17.