已知,求矩陣B.
【答案】分析:由題意設出矩陣B,然后根據(jù),利用待定系數(shù)法列出關于參數(shù)的方程組,最后根據(jù)解方程組即可求得矩陣B.
解答:解:設,則,…(5分)
解得故B=.…(10分)
點評:此題主要考查矩陣變換的性質和矩陣的乘法,我們要掌握矩陣的乘法法則,這類題是高中新增的內容,要引起注意,此題比較簡單,但計算時不可馬虎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個特征向量為
a1
=
1
1
,屬于特征值1的一個特征向量為
a2
=
3
-2
,求矩陣A.
(2)選修4-4:坐標與參數(shù)方程
以直角坐標系的原點為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位.已知直線l的極坐標方程為psin(θ-
π
3
)=6,圓C的參數(shù)方程為
x=10cosθ
y=10sinθ
,(θ為參數(shù)),求直線l被圓C截得的弦長.
(3)選修4-5:不等式選講
已知實數(shù)a,b,c,d滿足a+b+c+d=3,a2+2b2+3c2+6d2=5試求a的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[
 
1
1
],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2
2
sin(θ-
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩陣M的特征值λ1、λ2和特征向量
ξ
1
ξ2
;
(II)求M6
ξ
的值.
(2)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ-
π
4
)=2
2

(Ⅰ)求直線l的直角坐標方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
(3)選修4-5:不等式選講
(Ⅰ)已知:a、b、c∈R+,求證:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年福建省泉州八中高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

本題有(1)、(2)、(3)三個小題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分
(1)已知,求矩陣B.
(2)已知極點與原點重合,極軸與x軸正半軸重合,若曲線C1的極坐標方程為:,曲線C2的參數(shù)方程為:(θ為參數(shù)),試求曲線C1、C2的交點的直角坐標.
(3)已知,求3x+2y+z的最小值.

查看答案和解析>>

同步練習冊答案