設(shè)滿足以下兩個(gè)條件的有窮數(shù)列a1,a2,…an為n(n=2,3,4…)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(1)若等比數(shù)列{an}為2k(k∈N*)階“期待數(shù)列”,求公比q;
(2)若一個(gè)等差數(shù)列{an}既是2k(k∈N*)階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記n階“期待數(shù)列”{ai}的前k項(xiàng)和為Sk(k=1,2,3…,n):
(ⅰ)求證:;
(ⅱ)若存在m∈{1,2,3…n}使,試問(wèn)數(shù)列{Si}能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請(qǐng)說(shuō)明理由.
解:(1)若,則由①=0,得, 由②得或. 若,由①得,,得,不可能. 綜上所述,. (2)設(shè)等差數(shù)列的公差為,>0. ∵,∴, ∴, ∵>0,由得,, 由題中的①、②得, , 兩式相減得,, ∴, 又,得, ∴. (3)記,,…,中非負(fù)項(xiàng)和為,負(fù)項(xiàng)和為, 則,,得,, (ⅰ),即. (ⅱ)若存在使,由前面的證明過(guò)程知: ,,…,,,,…,, 且…. 記數(shù)列的前項(xiàng)和為, 則由(ⅰ)知,, ∴=,而, ∴,從而,, 又…, 則, ∴, 與不能同時(shí)成立, 所以,對(duì)于有窮數(shù)列,若存在使,則數(shù)列和數(shù)列不能為階“期待數(shù)列”. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
n |
i=1 |
ai |
i |
1 |
2 |
1 |
2n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州市高三下學(xué)期5月考前適應(yīng)性考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè)滿足以下兩個(gè)條件的有窮數(shù)列為階“期待數(shù)列”:
①;②.
(1)若等比數(shù)列為 ()階“期待數(shù)列”,求公比;
(2)若一個(gè)等差數(shù)列既是 ()階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記階“期待數(shù)列”的前項(xiàng)和為:
(。┣笞C:;
(ⅱ)若存在使,試問(wèn)數(shù)列能否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年安徽省安慶市望江二中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com