如圖,已知點(diǎn)A(0,-3),動點(diǎn)P滿足|PA|=2|PO|,其中O為坐標(biāo)原點(diǎn),動點(diǎn)P的軌跡為曲線C,過原點(diǎn)O作兩條直線分別l1:y=k1x,l2:y=k2x交曲線C 于點(diǎn)E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,
y4)(其中y2>0,y4>0)。
(1)求證:
(2)對于(1)中的E、F、G、H,設(shè)EH交x軸于點(diǎn)Q,GF交x軸于點(diǎn)R。求證:|OQ|=|OR|。(證明過程不考慮EH或GF垂直于x軸的情形)

(1)證明:設(shè)點(diǎn)P(x,y),
依題意,可得,
整理,得,
故動點(diǎn)P的軌跡方程為
將直線EF的方程,代入圓C方程,
整理得
根據(jù)根與系數(shù)的關(guān)系,得,,,……①
將直線GH的方程,代入圓C方程,
同理可得,,……②
由①、②可得,所以結(jié)論成立。
(2)證明:設(shè)點(diǎn),點(diǎn)
由E、Q、H三點(diǎn)共線,得,解得,
由F、R、G三點(diǎn)共線, 同理可得,


,

。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A(0,-3),動點(diǎn)P滿足|PA|=2|PO|,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)求動點(diǎn)P的軌跡方程.
(Ⅱ)記(Ⅰ)中所得的曲線為C.過原點(diǎn)O作兩條直線l1:y=k1x,l2:y=k2x分別交曲線C于點(diǎn)E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求證:
k1x1x2
x1+x2
=
k2x3x4
x3+x4

(III)對于(Ⅱ)中的E、F、G、H,設(shè)EH交x軸于點(diǎn)Q,GF交x軸于點(diǎn)R.求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)A(0,2)和拋物線y2=x+4上兩點(diǎn)B、C,使得AB⊥BC,求點(diǎn)C的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)A(0,2)和拋物線y2=x+4上兩點(diǎn)B、C,使得AB⊥BC,求點(diǎn)C的縱坐標(biāo)的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省中山市高三診斷數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知點(diǎn)A(0,-3),動點(diǎn)P滿足|PA|=2|PO|,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)求動點(diǎn)P的軌跡方程.
(Ⅱ)記(Ⅰ)中所得的曲線為C.過原點(diǎn)O作兩條直線l1:y=k1x,l2:y=k2x分別交曲線C于點(diǎn)E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求證:
(III)對于(Ⅱ)中的E、F、G、H,設(shè)EH交x軸于點(diǎn)Q,GF交x軸于點(diǎn)R.求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省佛山市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,已知點(diǎn)A(0,-3),動點(diǎn)P滿足|PA|=2|PO|,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)求動點(diǎn)P的軌跡方程.
(Ⅱ)記(Ⅰ)中所得的曲線為C.過原點(diǎn)O作兩條直線l1:y=k1x,l2:y=k2x分別交曲線C于點(diǎn)E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求證:
(III)對于(Ⅱ)中的E、F、G、H,設(shè)EH交x軸于點(diǎn)Q,GF交x軸于點(diǎn)R.求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

查看答案和解析>>

同步練習(xí)冊答案