(2012•杭州二模)設函數(shù)f(x)=
1
x2+x
.某程序框圖如圖所示,若輸出的結果S>
2011
2012
,則判斷框中可以填入的關于n的判斷條件是( 。
分析:按照程序框圖執(zhí)行幾次,找出此框圖的算法功能,由條件S>
2011
2012
解不等式得出n的范圍,進一步確定判斷框內(nèi)的條件即可.
解答:解:按照程序框圖依次執(zhí)行:
s=0,n=1,S=0+
1
1×2
=1-
1
2

n=2,S=1-
1
2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=1-
1
3

n=3,S=1-
1
4

以此類推,S=1-
1
1+n
2011
2012
=1-
1
2012
,所以n>2011,
故判斷框中填n≤2012.
故選B.
點評:本題主要考查了循環(huán)程序的程序框圖、歸納推理、裂項相消求和等知識,同時考查了分析問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•杭州二模)如圖,在矩形ABCD中,AB=2BC,點M在邊DC上,點F在邊AB上,且DF⊥AM,垂足為E,若將△ADM沿AM折起,使點D位于D′位置,連接D′B,D′C得四棱錐D′-ABCM.
(Ⅰ)求證:AM⊥D′F;
(Ⅱ)若∠D′EF=
π
3
,直線D'F與平面ABCM所成角的大小為
π
3
,求直線AD′與平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•杭州二模)設定義域為(0,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一個解,且x0∈(a,a+1)(a∈N*),則a=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•杭州二模)雙曲線
x2
a2
-
y2
b2
=1(a>0, b>0)
的左、右焦點分別為F1,F(xiàn)2,漸近線分別為l1,l2,點P在第一 象限內(nèi)且在l1上,若l2⊥PF1,l2∥PF2,則雙曲線的離心率是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•杭州二模)已知正三棱柱ABC-A′B′C′的正視圖和側視圖如圖所示.設△ABC,△A′B′C′的中心分別是O,O′,現(xiàn)將此三棱柱繞直線OO′旋轉,在旋轉過程中對應的俯視圖的面積為S,則S的最大值為
8
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•杭州二模)若全集U={1,2,3,4,5},CUP={4,5},則集合P可以是( 。

查看答案和解析>>

同步練習冊答案