【答案】
分析:(1)由f(x)=
,設(shè)x∈[1,2],則0≤x-1≤1,能求出f(x).
(2)設(shè)x∈[n,n+1],則0≤x-n≤1,f(x-n)=27(x-n)(n+1-x),f(x)=
=
=
=…=
=
(x-n)
2(n+1-x),由此入手能夠求出滿(mǎn)足題意的點(diǎn)P的個(gè)數(shù).
(3)由(2)知f′(x)=-
(x-n)[x-(n+
)],當(dāng)x∈(n,n+
)時(shí),f′(x)>0,f(x)在(n+
,n+1)上遞減,當(dāng)x∈[n,n+1],n∈N時(shí),f(x)
max=f(n+
)=
,
又f(x)≥f(n)=f(n+1)=0,由此能夠證明0≤S
n<4.
解答:解:(1)∵f(x)=
,
設(shè)x∈[1,2],則0≤x-1≤1,
∴f(x)=
=
(x-1)
2(2-x).
(2)設(shè)x∈[n,n+1],則0≤x-n≤1,
f(x-n)=27(x-n)(n+1-x),
∴f(x)=
=
=
=…=
=
(x-n)
2(n+1-x),
∴y=f(x),x∈[0,+∞].
f(x)=
,x∈[n,n+1],n∈N.
∴f′(x)=
=-
[3x
2-2(3n+1)x+n(3n+2)]
=-
[x
2-2(n+
)x+n(n+
)]
=-
(x-n)[x-(n+
)],
∴問(wèn)題轉(zhuǎn)化為判斷關(guān)于x的方程-
(x-n)[x-(n+
)]=-1在[n,n+1],n∈N內(nèi)是否有解,
即
在[n,n+1],n∈N內(nèi)是否有解,
令g(x)=(x-n)[x-(n+
)]-
=x
n-
x+
-
,
函數(shù)y=g(x)的圖象是開(kāi)口向上的拋物線,
其對(duì)稱(chēng)軸是直線x=n+
∈[n,n+1],
判別式
=
,
且g(n)=-
,g(n+1)=
=
.
①當(dāng)0≤n≤4,n∈N時(shí),∵g(n+1)>0,
∴方程
分別在區(qū)間[0,1],[1,2],[2,3],[3,4],[4,5]上各有一解,
即存在5個(gè)滿(mǎn)足題意的點(diǎn)P.
②當(dāng)n≥5(n∈N)時(shí),∵g(n+1)<0,
∴方程
在區(qū)間[n,n+1],n∈N,n≥5上無(wú)解.
綜上所述,滿(mǎn)足題意的點(diǎn)P有5個(gè).
(3)由(2)知f′(x)=-
(x-n)[x-(n+
)],
∴當(dāng)x∈(n,n+
)時(shí),f′(x)>0,f(x)在(n+
,n+1)上遞減,
∴當(dāng)x∈[n,n+1],n∈N時(shí),f(x)
max=f(n+
)=
,
又f(x)≥f(n)=f(n+1)=0,
∴對(duì)任意的n∈N
*,當(dāng)x
n∈[n,n+1]時(shí),都有0
,
∴S
n=f(x
1)+f(x
2)+…+f(x
n)
≤
=4-
<4,
∴0≤S
n<4.
點(diǎn)評(píng):本題考查解析式的求法,考查滿(mǎn)足條件的點(diǎn)的個(gè)數(shù)的求法,考查不等式的證明.解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.