(1)已知tana=
1
3
,計(jì)算:
1
2sinαcosα+cos2α


(2)已知α為第二象限角,化簡(jiǎn) 
1+2sin(5π-α)cos(α-π)
sin(α-
3
2
π)-
1-sin2(
3
2
π+α)
分析:(1)將所求式子的分母1用sin2α+cos2α代替,然后分子分母同除以cos2α,
(2)利用誘導(dǎo)公式及三角函數(shù)關(guān)系式即可將
1+2sin(5π-α)cos(α-π)
sin(α-
3
2
π)-
1-sin2(
3
2
π+α)
化簡(jiǎn),并求得其值.
解答:(1)解:∵tanα=
1
3
,cosα≠0,
1
2sinαcosα+cos2α
=
sin2α+cos2α
2sinαcosα+cos2α
=
tan2α+1
2tanα+1
=
1
9
+1
2
3
+1
=
2
3

(2)∵α為第二象限角,
1+2sin(5π-α)cos(α-π)
sin(α-
3
2
π)-
1-sin2(
3
2
π+α)
=
1-2sinα•cosα
cosα-sinα
=
sinα-cosα
cosα-sinα
=-1.
點(diǎn)評(píng):本題考查三角函數(shù)的誘導(dǎo)公式及三角函數(shù)間的基本關(guān)系,關(guān)鍵是熟練掌握三角函數(shù)的誘導(dǎo)公式及三角函數(shù)間的基本關(guān)系并靈活應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tana=-3,則
1-sinacosa2sinacosa+cos2a
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知tanA,tanB是方程3x2+8x-1=0的兩個(gè)根,則tanC等于( 。
A、-4B、-2C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知tan
A+B
2
=sinC
,給出以下四個(gè)論斷:
(1)tanAcotB=1;
(2)1<sinA+sinB≤
2

(3)sin2A+cos2B=1;
(4)cos2A+cos2B=sin2C;
其中正確論斷的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三角形ABC,已知tan
A+B
2
=sinC,下列四個(gè)論斷中正確的是( 。
①tanA•cotB=1;   ②0<sinA+sinB≤
2
;   ③sin2A+cos2B=1;   ④cos2A+cos2B=sin2C.

查看答案和解析>>

同步練習(xí)冊(cè)答案