我們把由半橢圓 與半橢圓 合成的曲線稱作“果圓”,其中,

如圖,設(shè)點(diǎn),,是相應(yīng)橢圓的焦點(diǎn),,,是“果圓” 與,軸的交點(diǎn),是線段的中點(diǎn).

(1)若是邊長為1的等邊三角形,求該

“果圓”的方程;

(2)設(shè)是“果圓”的半橢圓

上任意一點(diǎn).求證:當(dāng)取得最小值時(shí),在點(diǎn)處;

    (3)若是“果圓”上任意一點(diǎn),求取得最小值時(shí)點(diǎn)的橫坐標(biāo).

解:(1) ,

于是,

所求“果圓”方程為. 

(2)設(shè),則

    

          

     , 的最小值只能在處取到.

     即當(dāng)取得最小值時(shí),在點(diǎn)處.                    

    (3),且同時(shí)位于“果圓”的半橢圓和半橢圓上,所以,由(2)知,只需研究位于“果圓”的半橢圓上的情形即可.             

   

             

    當(dāng),即時(shí),的最小值在時(shí)取到,

此時(shí)的橫坐標(biāo)是.                                       

    當(dāng),即時(shí),由于時(shí)是遞減的,的最小值在時(shí)取到,此時(shí)的橫坐標(biāo)是.                               

    綜上所述,若,當(dāng)取得最小值時(shí),點(diǎn)的橫坐標(biāo)是;若,當(dāng)取得最小值時(shí),點(diǎn)的橫坐標(biāo)是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(07年上海卷文)(14分)

我們把由半橢圓 與半橢圓 合成的曲線稱作“果圓”,其中,. 如圖,設(shè)點(diǎn),是相應(yīng)橢圓的焦點(diǎn),,,是“果圓” 與,軸的交點(diǎn),是線段的中點(diǎn).

(1)若是邊長為1的等邊三角形,求該“果圓”的方程;

(2)設(shè)是“果圓”的半橢圓上任意一點(diǎn).求證:當(dāng)取得最小值時(shí),在點(diǎn)處;

    (3)若是“果圓”上任意一點(diǎn),求取得最小值時(shí)點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

21.我們把由半橢圓 與半橢圓 合成的曲線稱作“果圓”,其中,.

如圖,設(shè)點(diǎn),,是相應(yīng)橢圓的焦點(diǎn),,是“果圓” 與,軸的交點(diǎn),是線段的中點(diǎn).

(1)若是邊長為1的等邊三角形,求該“果圓”的方程;

(2)設(shè)是“果圓”的半橢圓上任意一點(diǎn).求證:當(dāng)取得最小值時(shí),在點(diǎn)處;

(3)若是“果圓”上任意一點(diǎn),求取得最小值時(shí)點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高中數(shù)學(xué)綜合測試卷(選修1-1)(解析版) 題型:選擇題

我們把由半橢圓與半橢圓合成的曲線稱作“果圓”(其中a2=b2+c2,a>b>c>0).如圖,設(shè)點(diǎn)F,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1、A2和B1、B2是“果圓”與x,y軸的交點(diǎn),若△FF1F2是邊長為1的等邊三角,則a,b的值分別為( )

A.
B.
C.5,3
D.5,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖南省益陽市沅江市高三質(zhì)量檢測試卷3(理科)(解析版) 題型:選擇題

我們把由半橢圓與半橢圓合成的曲線稱作“果圓”(其中a2=b2+c2,a>b>c>0).如圖,設(shè)點(diǎn)F,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1、A2和B1、B2是“果圓”與x,y軸的交點(diǎn),若△FF1F2是邊長為1的等邊三角,則a,b的值分別為( )

A.
B.
C.5,3
D.5,4

查看答案和解析>>

同步練習(xí)冊答案