(幾何證明選講選做題)如圖,AB是半圓的直徑,弦AC和弦BD相交于點(diǎn)P,且AB=3DC,則sin∠APD=   
【答案】分析:由圓周角定理,我們可得∠A=∠D,∠B=∠C,結(jié)合相似三角形判斷定理可得△ABP∽△DCP,進(jìn)而由相似三角形的性質(zhì)我們可得DP:AP=DC:AB=,即cos∠APD=,再由同角三角函數(shù)關(guān)系,即可得到答案.
解答:解:由圓周角定理,可得:
在△ABP和△DCP中
∠A=∠D,∠B=∠C
∴△ABP∽△DCP
所以DP:AP=DC:AB=,連接DA
因?yàn)锳B是圓O直徑
所以∠ADP=90°
∴cos∠APD=,
∴sin∠APD==
故答案為:
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是圓周角定理,相似三角形的判定與性質(zhì),同角三角函數(shù)關(guān)系,其中利用三角形相似的性質(zhì),得到cos∠APD=,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(幾何證明選講選做題)
自圓O外一點(diǎn)P引切線與圓切于點(diǎn)A,M為PA中點(diǎn),過(guò)M引割線交圓于B,C兩點(diǎn).
求證:∠MCP=∠MPB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(幾何證明選講選做題)如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,直線MN切⊙O于D,∠MDA=60°,則∠BCD=
150°
150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(幾何證明選講選做題)如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且BC=6,∠BAC=120°,則圓O的面積等于
12π
12π

(2)(不等式選講選做題)若存在實(shí)數(shù)x滿足|x-3|+|x-m|<5,則實(shí)數(shù)m的取值范圍為
(-2,8)
(-2,8)

(3)(極坐標(biāo)與參數(shù)方程選講選做題)設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為
7
10
10
的點(diǎn)的個(gè)數(shù)有
2
2
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(幾何證明選講選做題)
如圖,在Rt△ABC中,∠C=90°,E為AB上一點(diǎn),以BE為直徑作圓O剛好與AC相切于點(diǎn)D,若AB:BC=2:1,  CD=
3
,則圓O的半徑長(zhǎng)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(幾何證明選講選做題)
如圖,AD為圓O直徑,BC切圓O于點(diǎn)E,AB⊥BC,DC⊥BC,AB=4,DC=1,則AD等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案