如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC
(1)證明:A1C⊥平面BED;
(2)求二面角A1-DE-B的余弦值.

解:(1)如圖,以DA,DC,DD1為x,y,z軸,建立空間直角坐標系,
則A1(2,0,4),B(2,2,0),C(0,2,0),D(0,0,0),E(0,2,1)
,,

,
,
∴A1C⊥平面BED
(2)∵,
設平面A1DE的法向量為,
,
得-2x+2y-3z=0,-2x-4z=0,

同理得平面BDE的法向量為,
∴cos<>===-
所以二面角A1-DE-B的余弦值為
分析:(1)以DA,DC,DD1為x,y,z軸,建立空間直角坐標系,則,,由向量法能證明A1C⊥平面BED.
(2)由,得到平面A1DE的法向量,同理得平面BDE的法向量為,由向量法能求出二面角A1-DE-B的余弦值.
點評:本題考查直線與平面垂直的證明和求二面角的余弦值,解題時要認真審題,仔細解答,注意向量法的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽省高二上學期期中考試理科數(shù)學 題型:解答題

(本小題滿分12分)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB的中點.

(1)求證:AC1∥平面CNB1

(2)求四棱錐C-ANB1A1的體積.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

同步練習冊答案