(本小題滿分12分)
設函數(shù)的單調減區(qū)間是(1,2)
⑴求的解析式;
⑵若對任意的,關于的不等式
時有解,求實數(shù)的取值范圍.
解:⑴.
的單調減區(qū)間是(1,2),∴,………3分

.        ………5分
⑵由⑴得,
時,≥0,∴單調遞增,
.
要使關于的不等式時有解,
,       ………7分
對任意恒成立,
只需成立.
,則.    ………9分

時,上遞減,在上遞增,:]
.
.                                    ………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知是定義在上的奇函數(shù),當
(1)求的解析式;
(2)是否存在實數(shù),使得當的最小值是4?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)設函數(shù)
(1)求證:的導數(shù);
(2)若對任意都有求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分l4分)
已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(1)求函數(shù)f(x)的解析式;
  (2)求證:對于區(qū)間[-1,1]上任意兩個自變量的值x1,x2,都有
|f(x1)-f(x2)|≤4;
(3)若過點A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知函數(shù)f(x)=x3-ax2+(a2-1)x+b(a,b∈R),其圖象在點(1,f(1))處的切線方程為x+y-3=0.
(1)求a,b的值;
(2)求函數(shù)f(x)的單調區(qū)間,并求出f(x)在區(qū)間[-2,4]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-x2+bx+a(a,b∈R),且其導函數(shù)f′(x)的圖象過原點.
(1)若存在x<0,使得f′(x)=-9,求a的最大值;
(2)當a>0時,求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定義在R上的函數(shù),其中a為常數(shù).
(I)若x=1是函數(shù)的一個極值點,求a的值;
(II)若函數(shù)在區(qū)間(-1,0)上是增函數(shù),求a的取值范圍;
(III)若函數(shù),在x=0處取得最大值,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的導數(shù)為                   。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設點P是曲線上的任意一點,則點P到直線的最小距離為 ▲    

查看答案和解析>>

同步練習冊答案