如圖,設(shè)正方體ABCD—A1B1C1D1中,E為AA1的中點(diǎn),求平面B1DE和底面ABCD所成二面角的大小.

解:如圖,延長B1E和BA交于點(diǎn)F,連結(jié)DF,則DF是所求二面角的棱.

∵E是AA1的中點(diǎn),故B1E=EF,從而AF=A1B1=CD,

∴平面FACD是平行四邊形.

∴DF∥CA.

而CA⊥BD,

∴DF⊥DB.

又B1B⊥平面ABCD,

故B1D⊥DF.

∴∠B1DB是二面角的一個(gè)平面角.

在Rt△B1BD中,tan∠B1DB=,

∴∠B1DB=arctan.

故平面B1DE與底面ABCD所成二面角為arctan.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如下圖所示,其中主視圖與左視圖是腰長為6的等腰直角三角形,俯視圖是正方形。

(Ⅰ)請畫出該幾何體的直觀圖,并求出它的體積;

(Ⅱ)用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長為6的正方體ABCD—A1B1C1D1? 如何組拼?試證明你的結(jié)論;

(Ⅲ)在(Ⅱ)的情形下,設(shè)正方體ABCD—A1B1C1D1的棱CC1的中點(diǎn)為E, 求平面AB1E與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省六校高三第 一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)

一個(gè)幾何體的三視圖如右圖所示,其中正視圖和側(cè)視圖是腰長為6的兩個(gè)全等的等腰直角三角形.

(Ⅰ)請畫出該幾何體的直觀圖,并求出它的體積;

(Ⅱ)用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長為6的正方體ABCD—A1B1C1D1? 如何組拼?試證明你的結(jié)論;

(Ⅲ)在(Ⅱ)的情形下,設(shè)正方體ABCD—A1B1C1D1的棱CC1的中點(diǎn)為E, 求平面AB1E與平面ABC所成二面角的余弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為6的兩個(gè)全等的等腰直角三角形.

(Ⅰ)請畫出該幾何體的直觀圖,并求出它的體積;

(Ⅱ)用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長為6的正方體ABCD―A1B1C1D1? 如何組拼?試證明你的結(jié)論;

(Ⅲ)在(Ⅱ)的情形下,設(shè)正方體ABCD―A1B1C1D1的棱CC1的中點(diǎn)為E, 求平面AB1E與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為6的兩個(gè)全等的等腰直角三角形.

(1)請畫出該幾何體的直觀圖,并求出它的體積;

(2)用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長為6的正方體ABCD—A1B1C1D1?如何組拼?試證明你的結(jié)論;

(3)在(2)的情形下,設(shè)正方體ABCD—A1B1C1D1的棱CC1的中點(diǎn)為E,求平面AB1E與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如下圖所示,其中正視圖和側(cè)視圖是腰長為6的兩個(gè)全等的等腰直角三角形.

(1)請畫出該幾何體的直觀圖,并求出它的體積.

(2)用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長為6的正方體ABCD—A1B1C1D1?如何組拼?試證明你的結(jié)論.

(3)在(2)的情形下,設(shè)正方體ABCD—A1B1C1D1的棱CC1的中點(diǎn)為E,求面AB1E與面ABC所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案