3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x-1},x≤2}\\{lo{g}_{2}({x}^{2}-1),x>2}\end{array}\right.$,則f(f($\sqrt{5}$))的值為e.

分析 先求出f($\sqrt{5}$),從而求出f(f($\sqrt{5}$))的值即可.

解答 解:∵f($\sqrt{5}$)=${log}_{2}^{5-1}$=2,
∴f(f($\sqrt{5}$))=f(2)=e2-1=e,
故答案為:e.

點評 本題考查了求函數(shù)值問題,考查對數(shù)、指數(shù)的運算,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在等比數(shù)列{an}中,a1+a2+…+a5=27,$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{5}}$=3,則a3=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}和{bn}的通項公式分別是${a_n}=\frac{{a{n^2}+3}}{{b{n^2}-2n+2}}$,${b_n}=b-a{(\frac{1}{3})^{n-1}}$,其中a、b是實常數(shù),若$\lim_{n→∞}{a_n}=3,\lim_{n→∞}{b_n}=-\frac{1}{4}$,且a,b,c成等差數(shù)列,則c的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,內(nèi)角A,B,C對的邊長分別是a,b,c,cosB+(cosA-$\sqrt{3}$sinA)cosC=0
(1)求C的值;
(2)若c=2,求a+2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)p、q是兩個命題,若¬(p∨q)是真命題,那么( 。
A.p是真命題且q是假命題B.p是真命題且q是真命題
C.p是假命題且q是真命題D.p是假命題且q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,A、B分別是射線OM、ON上的點,給出下列以O(shè)為起點的向量:①$\overrightarrow{OA}+2\overrightarrow{OB}$;②$\frac{1}{2}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}$;③$\frac{3}{4}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}$;④$\frac{3}{4}\overrightarrow{OA}$+$\frac{1}{3}\overrightarrow{OB}$;⑤$\frac{3}{4}\overrightarrow{OA}+\overrightarrow{BA}+\frac{2}{3}\overrightarrow{OB}$.其中終點落在陰影區(qū)域內(nèi)的向量的序號有( 。
A.①②④B.①③C.②③⑤D.①③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知四邊形ABCD的對角線相交于一點,$\overrightarrow{AC}$=(1,$\sqrt{3}$),$\overrightarrow{BD}$=(-$\sqrt{3}$,1),則$\overrightarrow{AB}$•$\overrightarrow{CD}$的取值范圍是( 。
A.(0,2)B.(0,4]C.[-2,0)D.[-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.現(xiàn)有四個函數(shù):①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的圖象(部分)如圖,則按照從左到右的順序,圖象對應(yīng)的函數(shù)序號正確的一組是( 。
A.①④③②B.①④②③C.④①②③D.③④②①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若A(xl,y1),B(x2,y2)為平面上兩點,則定義A?B=x1y1+x2y2,已知點M($\sqrt{3}$,sinx),N(-1,cosx),設(shè)函數(shù)f(x)=M?N,將f(x)的圖象向左平移φ(φ>0)個單位長度后,所得圖象關(guān)于y軸對稱,則φ的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊答案