動圓P過定點F(1,0)且與直線x=-1相切,圓心P的軌跡為曲線C,過F作曲線C兩條互相垂直的弦AB,CD,設AB,CD的中點分別為M、N.
(1)求曲線C的方程;
(2)求證:直線MN必過定點.
分析:(1)由動圓P過定點F(1,0)且與直線x=-1相切,可得點P到定點F的距離等于到定直線x=-1的距離,利用拋物線的定義,可求曲線C的方程;
(2)求出M,N的坐標,可得直線MN的方程,即可得到結論.
解答:解:(1)∵動圓P過定點F(1,0)且與直線x=-1相切,
∴點P到定點F的距離等于到定直線x=-1的距離,
∴點P的軌跡為拋物線,曲線C的方程為y2=4x;
(2)設A(x1,y1),B(x2,y2),直線AB的方程為y=k(x-1),代入y2=4x可得k2x2-2(k2+2)x+k2=0
∴x1+x2=
2(k2+2)
k2

∴xM=
k2+2
k2
,∴yM=k(xM-1)=
2
k

∴M(
k2+2
k2
,
2
k

∵AB⊥CD,∴將M坐標中的k換成-
1
k
,可得N(2k2+1,-2k)
∴直線MN的方程為y+2k=
-2k-
2
k
2k2+1-
k2+2
k2
(x-2k2-1)
整理得(1-k2)y=k(x-3)
∴不論k為何值,直線MN必過定點T(3,0).
點評:本題主要考查拋物線的定義,考查直線恒過定點,確定直線的方程是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

動圓P過定點F(1,0)且與直線x=-1相切,圓心P的軌跡為曲線C,過F作曲線C兩條互相垂直的弦AB,CD,設AB,CD的中點分別為M、N.
(1)求曲線C的方程;
(2)求證:直線MN必過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省金華一中高三(上)12月月考數(shù)學試卷(理科)(解析版) 題型:解答題

動圓P過定點F(1,0)且與直線x=-1相切,圓心P的軌跡為曲線C,過F作曲線C兩條互相垂直的弦AB,CD,設AB,CD的中點分別為M、N.
(1)求曲線C的方程;
(2)求證:直線MN必過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省金華一中高三(上)12月月考數(shù)學試卷(文科)(解析版) 題型:解答題

動圓P過定點F(1,0)且與直線x=-1相切,圓心P的軌跡為曲線C,過F作曲線C兩條互相垂直的弦AB,CD,設AB,CD的中點分別為M、N.
(1)求曲線C的方程;
(2)求證:直線MN必過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省濟寧市汶上一中高三(上)12月月考數(shù)學試卷(理科)(解析版) 題型:解答題

動圓P過定點F(1,0)且與直線x=-1相切,圓心P的軌跡為曲線C,過F作曲線C兩條互相垂直的弦AB,CD,設AB,CD的中點分別為M、N.
(1)求曲線C的方程;
(2)求證:直線MN必過定點.

查看答案和解析>>

同步練習冊答案