如圖所示,O為坐標原點,過點P(2,0)且斜率為k的直線L交拋物線y=2x于M(x,y),N(x,y)兩點. ⑴寫出直線L的方程;⑵求xx與yy的值;⑶求證:OM⊥ON

⑴直線L方程為y=k(x-2)
⑵xx=4,yy=-4
(3)根據(jù)已知中直線的方程意義拋物線的方程聯(lián)立方程組,結(jié)合斜率公式來表示求證。

解析試題分析:解:
(Ⅰ)解:直線l過點P(2,0)且斜率為k,故可直接寫出直線l的方程為y=k(x-2) (k≠0)①
(Ⅱ)解:由①及y2=2x消去y代入可得k2x2-2(k2+1)x+4k2=0.②則可以分析得:點M,N的橫坐標x1與x2是②的兩個根,由韋達定理得x1x2由韋達定理得x1x2= =4.又由y12=2x1,y22=2x2得到(y1y22=4x1x2=4×4=16,又注意到y(tǒng)1y2<0,所以y1y2=-4.(Ⅲ)證明:設OM,ON的斜率分別為k1,k2,則k=,k=.相乘得k k==-1OM⊥ON所以證得:OM⊥ON.
考點:直線與拋物線的位置關系
點評:主要是考查了拋物線的方程以及性質(zhì)和直線與拋物線的位置關系,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為F2,點F1與F2關于坐標原點對稱,直線m垂直于軸(垂足為T),與拋物線交于不同的兩點P、Q,且.
(Ⅰ)求點T的橫坐標;
(Ⅱ)若橢圓C以F1,F2為焦點,且F1,F2及橢圓短軸的一個端點圍成的三角形面積為1.
① 求橢圓C的標準方程;
② 過點F2作直線l與橢圓C交于A,B兩點,設,若的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓具有性質(zhì):若是橢圓為常數(shù)上關于原點對稱的兩點,點是橢圓上的任意一點,若直線的斜率都存在,并分別記為,,那么之積是與點位置無關的定值
試對雙曲線為常數(shù)寫出類似的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知曲線的參數(shù)方程為,曲線的極坐標方程為
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)判斷曲線與曲線的交點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的兩個焦點,過且與坐標軸不平行的直線與橢圓交于兩點,如果的周長等于8。
(1)求橢圓的方程;
(2)若過點的直線與橢圓交于不同兩點,試問在軸上是否存在定點,使恒為定值?若存在,求出點的坐標及定值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

拋物線的準線與軸交于,焦點為,若橢圓、為焦點、且離心率為.                   
(1)當時,求橢圓的方程;
(2)若拋物線與直線軸所圍成的圖形的面積為,求拋物線和直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,曲線的參數(shù)方程為 (為參數(shù)) 上的動點,點滿足點的軌跡為曲線.
(1)求的方程;
(2)在以為極點,軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為,與的異于極點的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

過點的直線交直線,過點的直線軸于點,.
(1)求動點的軌跡的方程;
(2)設直線l與相交于不同的兩點,已知點的坐標為(-2,0),點Q(0,)在線段的垂直平分線上且≤4,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系O中,直線與拋物線=2相交于A、B兩點。
(1)求證:命題“如果直線過點T(3,0),那么=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。

查看答案和解析>>

同步練習冊答案