2.若sin($\frac{π}{3}$-α)=$\frac{4}{5}$,則sin(2α-$\frac{π}{6}$)的值為$-\frac{7}{25}$.

分析 利用誘導(dǎo)公式以及二倍角公式化簡(jiǎn)求解即可.

解答 解:sin($\frac{π}{3}$-α)=$\frac{4}{5}$,可得cos(α+$\frac{π}{6}$)=$\frac{4}{5}$.
sin(2α-$\frac{π}{6}$)=-sin(-2α+$\frac{π}{6}$)=-cos(2$α+\frac{π}{3}$)=-2cos2(α+$\frac{π}{6}$)+1=$-\frac{32}{25}$+1=-$\frac{7}{25}$.
故答案為:$-\frac{7}{25}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及二倍角的余弦函數(shù),考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若直線l:$\frac{x}{a}$+$\frac{y}$=1(a>0,b>0)經(jīng)過點(diǎn)(1,2),則直線l在x軸和y軸上的截距之和的最小值為( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3+\sqrt{2}$D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知,在直角梯形ABCD中,BC∥AD,BC⊥CD,∠BAD=$\frac{π}{3}$,AB=2BC=2,動(dòng)點(diǎn)P在以C為圓心且與直線BD相切的圓上運(yùn)動(dòng),若$\overrightarrow{AP}$=α$\overrightarrow{AB}$+β$\overrightarrow{AD}$,則α+β的取值范圍是( 。
A.[0,1]B.[0,2]C.[1,2]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.下列命題中,正確的命題是(3).
(1)直線的傾斜角為α,則此直線的斜率為tanα
(2)直線的斜率為tanα,則此直線的傾斜角為α
(3)任何一條直線都有傾斜角,但不是每一條直線都存在斜率
(4)直線的斜率為0,則此直線的傾斜角為0或π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程為2x+y=0,則C的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.直線x+y-1=0截圓x2+y2-4x+2y-5=0所得的弦長(zhǎng)為2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.log2(47×25)-lg$\root{4}{100}$+log23•log34=$\frac{41}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給出下列命題:
①向量$\overrightarrow{AB}$與$\overrightarrow{CD}$是共線向量,則A、B、C、D四點(diǎn)必在一直線上;
②兩個(gè)單位向量是相等向量;
③若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow$=$\overrightarrow{c}$,則$\overrightarrow{a}=\overrightarrow{c}$;
④若一個(gè)向量的模為0,則該向量與任一向量平行;
⑤若$\overrightarrow{a}$與$\overrightarrow$共線,$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$與$\overrightarrow{c}$共線
⑥若Sn=sin$\frac{π}{7}$+sin$\frac{2π}{7}$+…+sin$\frac{nπ}{7}$(n∈N*),則在S1,S2,…,S100中,正數(shù)的個(gè)數(shù)是72.
其中正確命題的序號(hào)是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列既是奇函數(shù),又在區(qū)間$(0,\frac{π}{2})$是增函數(shù)的是( 。
A.y=sinxB.y=-sinxC.y=cosxD.y=-cosx

查看答案和解析>>

同步練習(xí)冊(cè)答案