分析 法一令f(x)=ax2-x+a,當(dāng)a=0時(shí),不等式為x<0不合題意;當(dāng)a≠0時(shí),解得$a≥\frac{1}{2}$,由此能求出a的取值范圍.
法二:ax2-x+a>0⇒$a>\frac{x}{{{x^2}+1}}=\frac{1}{{x+\frac{1}{x}}}$,由此能求出a的取值范圍.
解答 解:法一:∵不等式ax2-x+a>0,對(duì)任意x∈(1,+∞)恒成立,
∴令f(x)=ax2-x+a,
當(dāng)a=0時(shí),不等式為x<0不合題意;
當(dāng)a≠0時(shí),需$\left\{\begin{array}{l}a>0\\ f(1)≥0\\ \frac{1}{2a}≤1\end{array}\right.$,
解得$a≥\frac{1}{2}$;綜上$a≥\frac{1}{2}$
解法二:不等式ax2-x+a>0,對(duì)任意x∈(1,+∞)恒成立,
∵ax2-x+a>0,∴ax2+a>x,
∴$a>\frac{x}{{{x^2}+1}}=\frac{1}{{x+\frac{1}{x}}}$≥$\frac{1}{2\sqrt{x•\frac{1}{x}}}$=$\frac{1}{2}$,
∴$a≥\frac{1}{2}$.
故答案為:$[\frac{1}{2},+∞)$.
點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意不等式性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5π}{3}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函數(shù) | B. | 其圖象關(guān)于直線x=-$\frac{π}{4}$對(duì)稱(chēng) | ||
C. | 函數(shù)g(x)是奇函數(shù) | D. | 當(dāng)x∈[0,$\frac{π}{3}$]時(shí),函數(shù)g(x)的值域是[-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m<1或m>6 | B. | m=1或m=6 | C. | 1<m<6 | D. | 1≤m≤6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p是假命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 | B. | p是假命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 | ||
C. | p是真命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 | D. | p是真命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com