14.某校高二2班學(xué)生每周用于數(shù)學(xué)學(xué)習(xí)的時間x(單位:h)與數(shù)學(xué)成績y(單位:分)之間有如表數(shù)據(jù):
x24152319161120161713
y92799789644783687159
(Ⅰ)求線性回歸方程;
(Ⅱ)該班某同學(xué)每周用于數(shù)學(xué)學(xué)習(xí)的時間為18小時,試預(yù)測該生數(shù)學(xué)成績.
參考數(shù)據(jù):$\overline x=17.4$,$\overline y=74.9$,$\sum_{i=1}^{10}{{x_i}^2=3182}$,$\sum_{i=1}^{10}{{y_i}^2=58375}$,$\sum_{i=1}^{10}{{x_i}{y_i}=13578}$
回歸直線方程參考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

分析 (Ⅰ)利用已知條件求出回歸直線方程的幾何量,得到回歸直線方程,
(Ⅱ)將x=18代入回歸方程,求出y的預(yù)報值即可.

解答 解:(Ⅰ)$\hat b=\frac{{\sum_{i=1}^{10}{{x_i}{y_i}}-10\overline x\overline y}}{{\sum_{i=1}^{10}{{x_i}^2}-10{{\overline x}^2}}}=\frac{545.4}{154.4}≈3.53$,
$\hat a=\overline y-b\overline x=74.9-3.53×17.4≈13.5$,
因此可求得回歸直線方程$\hat y=3.53x+13.5$.
(Ⅱ)當(dāng)x=18時,$\hat y=3.53×18+13.5=77.04≈77$,
故該同學(xué)預(yù)計可得77分左右.

點評 本題考查回歸直線方程的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知P是橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$上任意一點,過橢圓的右頂點A和上頂點B分別作x軸和y軸的垂線,兩垂線交于點C,過P作AC,BC的平行線交BC于點M,交AC于點N,交AB于點D,E,矩形PMCN的面積是S1,三角形PDE的面積是S2,則$\frac{{2{S_1}}}{S_2}$=( 。
A.2B.1C.$\frac{8}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}前n項和為Sn,且Sn=2an-(n-1)q-1,其中n∈N*,q為常數(shù).
(Ⅰ)當(dāng)q=0時,求數(shù)列{an}的通項公式;
(Ⅱ)當(dāng)q>1時,對任意n∈N*,且n≥2,證明:$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+$\frac{1}{1+{a}_{3}}$+…+$\frac{1}{1+{a}_{n}}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知F1,F(xiàn)2為橢圓的兩個焦點,以F1為圓心,且經(jīng)過橢圓中心的圓與橢圓有一個公共點為P,若PF2恰好與圓F1相切,則該橢圓的離心率為$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A、B、C所對的邊分別為a,b,c,已知(2c-a)cosB=bcosA.
(1)求角B;
(2)若b=6,c=2a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列關(guān)于K2的說法正確的是(  )
A.K2在任何相互獨立問題中都可以用來檢驗有關(guān)還是無關(guān)
B.K2的值越大,兩個事件的相關(guān)性越大
C.K2是用來判斷兩個分類變量是否有關(guān)系的隨機變量,只對于兩個分類變量適合
D.K2的觀測值的計算公式為K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在數(shù)列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{3{a}_{n}}{{a}_{n}+3}$,求a2、a3、a4的值,由此猜想數(shù)列{an}的通項公式,并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.以平面直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$,(α為參數(shù),且α∈[0,π]),曲線C2的極坐標(biāo)方程為ρ=-2sinθ.
(Ⅰ)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
(Ⅱ)若P是C1上任意一點,過點P的直線l交C2于點M,N,求|PM|•|PN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知復(fù)數(shù)$\frac{2+ai}{2-i}$為純虛數(shù)(i是虛數(shù)單位),則實數(shù)a=4.

查看答案和解析>>

同步練習(xí)冊答案