5.為貫徹“咬文嚼字抓理解,突出重點(diǎn)抓記憶”的學(xué)習(xí)思想.某校從高一年級(jí)和高二年級(jí)各選取100名同學(xué)進(jìn)行現(xiàn)學(xué)段基本概念知識(shí)競(jìng)賽.圖(1)和圖(2)分別是對(duì)高一年級(jí)和高二年級(jí)參加競(jìng)賽的學(xué)生成績(jī)按[40,50),[50,60),[60,70),[70,80]分組,得到的頻率分布直方圖.

(1)分別計(jì)算參加這次知識(shí)競(jìng)賽的兩個(gè)年級(jí)學(xué)生的平均成績(jī);(注:統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表)
(2)完成下面2×2列聯(lián)表,并回答是否有99%的把握認(rèn)為“兩個(gè)年級(jí)學(xué)生現(xiàn)學(xué)段對(duì)基本知識(shí)的了解有差異”?
成績(jī)小于60分人數(shù)成績(jī)不小于60分人數(shù)合計(jì)
高一年級(jí)
高二年級(jí)
合計(jì)
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.臨界值表:
P(K2≥k)0.100.050.010
k2.7063.8416.635

分析 (1)根據(jù)頻率分布直方圖計(jì)算數(shù)據(jù)的平均成績(jī)即可;
(2)填寫(xiě)2×2列聯(lián)表,計(jì)算K2,對(duì)照數(shù)表即可得出結(jié)論.

解答 解:(1)高一年級(jí)學(xué)生競(jìng)賽平均成績(jī)?yōu)?br />(45×30+55×40+65×20+75×10)÷100=56(分),…(2分)
高二年級(jí)學(xué)生競(jìng)賽平均成績(jī)?yōu)?br />(45×15+55×35+65×35+75×15)÷100=60(分);…(4分)
(2)2×2列聯(lián)表如下:

成績(jī)小于6(0分)人數(shù)成績(jī)不小于6(0分)人數(shù)合計(jì)
高一年級(jí)7030100
高二年級(jí)5050100
合計(jì)12080200
∴K2=$\frac{200×?50×30-50×70?2}{100×100×120×80}$≈8.333>6.635,…(11分)
∴有99%的把握認(rèn)為“兩個(gè)年級(jí)學(xué)生現(xiàn)學(xué)段對(duì)基本知識(shí)的了解有差異”.…(12分)

點(diǎn)評(píng) 本題考查了頻率分布直方圖的應(yīng)用問(wèn)題,也考查了獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=lnx+ax(a∈R).
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果函數(shù)g(x)=f(x)+$\frac{2}{x}$在(0,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,正三角形ABC的邊長(zhǎng)為1,它是水平放置的一個(gè)平面圖形的直觀圖,則原圖形的面積是( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$f(x)=(\sqrt{3}cosx-sinx)sinx$,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期與單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)f(x)在$[{0,\frac{π}{4}}]$上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.作出函數(shù)y=3sin($\frac{1}{2}$x+$\frac{π}{6}$)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知ABCD四點(diǎn)的坐標(biāo)分別為A(1,0),B(4,3),C(2,4),D(0,2)
(1)判斷四邊形ABCD的形狀,并給出證明;
(2)求cos∠DAB;
(3)設(shè)實(shí)數(shù)t滿足$(\overrightarrow{AB}-t\overrightarrow{CD})⊥\overrightarrow{OC}$,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{2x-y-5≤0}\end{array}\right.$則z=x2+y2的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某四棱錐的三視圖如圖所示,則該四棱錐的外接球的表面積是(  )
A.B.C.12πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,a=1,b=$\sqrt{3}$,B=60°,那么角A等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習(xí)冊(cè)答案