【題目】某地區(qū)年至年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析年至年該地區(qū)農(nóng)村居民家庭人純收入的變化情況,并預測該地區(qū)年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
.
參考數(shù)據(jù):.
【答案】(1).
(2)故年至年該地區(qū)居民家庭人均純收入逐年增加,平均每年增加千元.
約為千元.
【解析】分析:(1)由表中的數(shù)據(jù)可分別求得公式中的分子、分母,先求,,進而可得
,
.代入公式即可求得,再由求得,求得回歸方程為. (2)由回歸方程為.中的系數(shù),可知兩變量為正相關(guān),進而可得年至年該地區(qū)居民家庭人均純收入逐年增加,平均每年增加千元。年的年份代號,故可將代入回歸方程為.可求得,進而預測該地區(qū)年該地區(qū)居民家庭人均純收入約為千元.
詳解:(1)由所給數(shù)據(jù)計算得
,
,
,
.
,,
所求回歸方程為.
(2)由(1)知,,故年至年該地區(qū)居民家庭人均純收入逐年增加,平均每年增加千元.
將年的年份代號代入(1)的回歸方程,得,
故預測該地區(qū)年該地區(qū)居民家庭人均純收入約為千元.
科目:高中數(shù)學 來源: 題型:
【題目】已知分別為的三內(nèi)角A,B,C的對邊,其面積,在等差數(shù)列中,,公差.數(shù)列的前n項和為,且.
(1)求數(shù)列的通項公式;
(2)若,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知兩條拋物線E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),過原點O的兩條直線l1和l2 , l1與E1 , E2分別交于A1、A2兩點,l2與E1、E2分別交于B1、B2兩點.
(1)證明:A1B1∥A2B2;
(2)過O作直線l(異于l1 , l2)與E1、E2分別交于C1、C2兩點.記△A1B1C1與△A2B2C2的面積分別為S1與S2 , 求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin( )(A>0,ω>0,)的部分圖象如圖所示.若橫坐標分別為-1、1、5的三點M,N,P都在函數(shù)f(x)的圖象上,則sin∠MNP的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,兩座建筑物的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是9和15,從建筑物的頂部看建筑物的視角.
(1)求的長度;
(2)在線段上取一點點與點不重合),從點看這兩座建筑物的視角分別為問點在何處時,最小?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市對所有高校學生進行普通話水平測試,發(fā)現(xiàn)成績服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來抽樣出的10名學生的成績.
(1)計算這10名學生的成績的均值和方差;
(2)給出正態(tài)分布的數(shù)據(jù):P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.
由(1)估計從全市隨機抽取一名學生的成績在(76,97)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com