已知α∈(
π
2
,π)
,tanα=-
3
4
,則sin(α+π)等于( 。
分析:根據(jù)α的范圍,由tanα的值,利用同角三角函數(shù)間的基本關(guān)系求出cosα的值,進(jìn)而求出sinα的值,原式利用誘導(dǎo)公式化簡(jiǎn)后,將sinα的值代入計(jì)算即可求出值.
解答:解:∵α∈(
π
2
,π),tanα=-
3
4

∴cosα=-
1
1+tan2α
=-
3
5
,
sinα=
1-cos2α
=
4
5
,
則sin(α+π)=-sinα=-
4
5

故選:D.
點(diǎn)評(píng):此題考查了誘導(dǎo)公式的作用,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知-
π
2
<x<0,sinx+cosx=
1
5
,求sinxcosx和sinx-cosx的值.
(2)已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知-
π
2
<x<0,則sinx+cosx=
1
5

(I)求sinx-cosx的值;
(Ⅱ)求
3sin2
x
2
-2sin
x
2
cos
x
2
+cos2
x
2
tanx+cotx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α∈(
π
2
,π),cosα=-
4
5
,則tan(α-
π
4
)
等于( 。
A、
1
7
B、7
C、-
1
7
D、-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
π
2
<α<π,tanα-cotα=
8
3
(1)求tanα的值;(2)求
5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
2
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知-
π
2
<x<0
,sinx+cosx=
1
5
,則
sinx-cosx
sinx+cosx
等于( 。
A、-7
B、-
7
5
C、7
D、
7
5

查看答案和解析>>

同步練習(xí)冊(cè)答案