已知集合,其中,表示

的所有不同值的個數(shù).

(1)已知集合,分別求,;

(2)求的最小值.

 解:(1)由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,

l(P)=5 

由2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,

l(Q)=6     

(3)不妨設(shè)a1a2a3<…<an,可得

a1a2a1a3<…<a1ana2ana3an<…<an-1an,

aiaj (1≤ijn)中至少有2n-3個不同的數(shù),即l(A)≥2n-3.

事實上,設(shè)a1,a2a3,…,an成等差數(shù)列,考慮aiaj (1≤ijn),根據(jù)等差數(shù)列的性質(zhì),當(dāng)ijn時, aiaja1aij-1;當(dāng)ijn時, aiajaijnan

因此每個和aiaj(1≤ijn)等于a1ak(2≤kn)中的一個,或者等于alan(2≤ln-1)中的一個.故對這樣的集合A,l(A)=2n-3,所以l(A)的最小值為2n-3. 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆安徽省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知集合,其中,表示和中所有不同值的個數(shù).設(shè)集合 ,則     .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省高三3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知集合,其中表示

的所有不同值的個數(shù).

(1)已知集合,,分別求;

(2)求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合,其中表示和中所有不同值的個數(shù).

(Ⅰ)設(shè)集合,,分別求;

(Ⅱ)對于集合,猜測的值最多有多少個;

(Ⅲ)若集合,試求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合,其中,表示和中所有不同值的個數(shù).

(Ⅰ)設(shè)集合,,分別求;

(Ⅱ)若集合,求證:;

(Ⅲ)是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由?

查看答案和解析>>

同步練習(xí)冊答案