已知:0<a<b<c<d且a+d=b+c,求證:
a
+
d
b
+
c
考點:不等式的證明
專題:選作題,不等式的解法及應用
分析:利用分析法進行證明即可.
解答: 證明:因為
a
+
d
b
+
c
都是正數(shù),
所以為了證明
a
+
d
b
+
c
,
只需證(
a
+
d
2<(
b
+
c
2
只需證a+d+2
ad
<b+c+2
bc

而a+d=b+c,
即證
ad
bc
,
即證ad<bc;
又a+d=b+c,
所以d=b+c-a,
即證:a(b+c-a)<bc,
即證:a2-(b+c)a+bc>0,
即證:(a-b)(a-c)>0;
而0<a<b<c<d,
所以(a-b)(a-c)>0顯然成立,
所以原不等式成立.
點評:本題考查不等式的證明,考查分析法的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲、乙兩個鋼鐵廠2010年的年產(chǎn)量均為100萬噸,兩廠通過革新煉鋼技術、改善生產(chǎn)條件等措施,預計從2011年起,在今后10年內(nèi),甲廠的年產(chǎn)量每年都比上一年增加10萬噸;以2010年為第一年,乙廠第n(n∈N*,n≥2)年的年產(chǎn)量每年都比上一年增加2n-1萬噸.
(Ⅰ)“十二•五”期間(即2011年至2015年),甲、乙兩個鋼鐵廠的累計鋼產(chǎn)量共多少萬噸?
(Ⅱ)若某鋼廠的年產(chǎn)量首次超過另一鋼廠年產(chǎn)量的2倍,則該鋼廠于當年底將另一鋼廠兼并,問:在今后10年內(nèi),其中一個鋼廠能否被另一個鋼廠兼并?若能,請推算出哪個鋼廠在哪一年底被兼并;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(
x
-
2
x2
n(n∈N*)的展開式中第五項的系數(shù)與第三項的系數(shù)的比是10:1.
(1)證明:展開式中沒有常數(shù)項;
(2)求展開式中二項式系數(shù)最大的項;
(3)求展開式中有多少項有理項?(不必一一列出)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有8個質(zhì)量和外形一樣的球,其中A1,A2,A3為紅球的編號,B1,B2,B3為黃球的編號,C1,C2為藍球的編號,從三種顏色的球中分別選出一個球,放到一個盒子內(nèi).
(1)求紅球A1被選中的概率;
(2)求黃球B1和藍球C1不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(-
1
2
,2cosx),
n
=(cos2x+
3
sin2x,cosx),記函數(shù)f(x)=
m
n

(Ⅰ)求f(x)的最小正周期及單調(diào)減區(qū)間;
(Ⅱ)記△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,若f(
B
2
)=1,b=3,c=2,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足:Sn=
1
2
n2+
1
2
n.數(shù)列{bn}滿足b1=1,2bn-bn-1=0(n≥2,n∈N*).
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設cn=anbn,數(shù)列{cn}的前n項和為Tn,證明:1≤Tn<4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

101(2)轉(zhuǎn)化為十進制數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二次函數(shù)y=ax2的圖象是開口向上的拋物線,其焦點到準線的距離為2,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1,2,3,4,5,6這六個數(shù)中,隨機抽取2個不同的數(shù),則這2個數(shù)的和為偶數(shù)的概率是
 

查看答案和解析>>

同步練習冊答案