已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013110223222790919549/SYS201311022324019901876285_ST.files/image002.png">,若上為增函數(shù),則稱為“一階比增函數(shù)”;若上為增函數(shù),則稱為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.

(Ⅰ)已知函數(shù),若,求實(shí)數(shù)的取值范圍;

(Ⅱ)已知,的部分函數(shù)值由下表給出,

 求證:

(Ⅲ)定義集合

請(qǐng)問(wèn):是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說(shuō)明理由.

 

【答案】

(I)(Ⅱ)見(jiàn)解答(Ⅲ) .

【解析】

試題分析:(I)理解的意義,代入后利用函數(shù)的性質(zhì)求解; (Ⅱ)通過(guò)表格得到 ,再運(yùn)用為增函數(shù)建立不等式,導(dǎo)出,運(yùn)用 即可. (Ⅲ)判斷 即運(yùn)用反證法證明,如果使得則利用為增函數(shù)一定可以找到一個(gè),使得,對(duì)成立;同樣用反證法證明證明上無(wú)解;從而得到,對(duì)成立,即存在常數(shù),使得,,有成立,選取一個(gè)符合條件的函數(shù)判斷 的最小值是 ,由上面證明結(jié)果確定 即是符合條件的所有函數(shù)的結(jié)果.

試題解析:(I)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013110223222790919549/SYS201311022324019901876285_DA.files/image028.png">且,

是增函數(shù),所以         2分

不是增函數(shù),而 

當(dāng)是增函數(shù)時(shí),有,所以當(dāng)不是增函數(shù)時(shí),.

綜上得       4分

(Ⅱ) 因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013110223222790919549/SYS201311022324019901876285_DA.files/image028.png">,且 

所以,

所以,

同理可證

三式相加得 

所以                                                     6分

因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013110223222790919549/SYS201311022324019901876285_DA.files/image043.png">所以 

, 所以 

所以                                           8分

(Ⅲ) 因?yàn)榧?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013110223222790919549/SYS201311022324019901876285_DA.files/image048.png"> 且存在常數(shù) ,使得任取 

  所以,存在常數(shù) ,使得   對(duì)成立

我們先證明對(duì)成立

假設(shè)使得

 

因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013110223222790919549/SYS201311022324019901876285_DA.files/image053.png">是二階增函數(shù),即是增函數(shù).

所以當(dāng)時(shí),,所以 

所以一定可以找到一個(gè),使得 

這與  對(duì)成立矛盾                                 11分

對(duì)成立

 所以,對(duì)成立

下面我們證明上無(wú)解

假設(shè)存在,使得,

則因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013110223222790919549/SYS201311022324019901876285_DA.files/image053.png">是二階增函數(shù),即是增函數(shù)

一定存在,這與上面證明的結(jié)果矛盾

所以上無(wú)解

綜上,我們得到,對(duì)成立

所以存在常數(shù),使得,有成立

又令,則對(duì)成立,

又有上是增函數(shù) ,所以

而任取常數(shù),總可以找到一個(gè),使得時(shí),有 

所以的最小值 為.                                          14分

考點(diǎn):閱讀能力,構(gòu)造函數(shù)能力,邏輯推理能力,反證法證明,不等式證明,函數(shù)單調(diào)性應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)的定義域?yàn)椋?,+∞),且單調(diào)遞增,滿足f(4)=1,f(xy)=f(x)+f(y).
(Ⅰ)證明:f(1)=0;
(Ⅱ)若f(x)+f(x-3)≤1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)的定義域?yàn)镽,對(duì)任意的x1,x2都滿足f(x1+x2)=f(x1)+f(x2),當(dāng)x>0時(shí),f(x)>0.
(I)試判斷并證明f(x)的奇偶性;
(II)試判斷并證明f(x)的單調(diào)性;
(III)若f(cos2θ-3)+f(4m-2mcosθ)>0對(duì)所有的θ∈[0,
π2
]
均成立,求實(shí)數(shù)m 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年浙江省杭州市七校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb2018.1010pic.com//pic6/res/gzsx/web/STSource/2014040104174106084083/SYS201404010418057327658047_ST.files/image002.png">,

(1)求

(2)若,且的真子集,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆遼寧朝陽(yáng)高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013080512213268898492/SYS201308051222069045733946_ST.files/image002.png">,部分對(duì)應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。

0

下列關(guān)于函數(shù)的命題:

①函數(shù)上是減函數(shù);②如果當(dāng)時(shí),最大值是,那么的最大值為;③函數(shù)個(gè)零點(diǎn),則;④已知的一個(gè)單調(diào)遞減區(qū)間,則的最大值為

其中真命題的個(gè)數(shù)是(           )

A、4個(gè)    B、3個(gè)  C、2個(gè)  D、1個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年海南省?谑懈呷呖颊{(diào)研考試?yán)砜茢?shù)學(xué) 題型:選擇題

已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052323564548436139/SYS201205232357391406841349_ST.files/image002.png">,且,的導(dǎo)函數(shù),函數(shù)的圖象如圖所示.若正數(shù),滿足,則的取值范圍是

    A.    B.  C.    D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案