【題目】設(shè)函數(shù),其中是自然對數(shù)的底數(shù).
(1)若在上為單調(diào)函數(shù),求實數(shù)的取值范圍;
(2)若,求證: 有唯一零點(diǎn)的充要條件是.
【答案】(1);(2)見解析.
【解析】試題分析:(1)討論兩種情況,當(dāng) 時,不是單調(diào)函數(shù),當(dāng)時,由, 在為單調(diào)遞增函數(shù),從而可得結(jié)果;(2) 當(dāng)時,研究函數(shù)的單調(diào)性可得函數(shù)有唯一零點(diǎn),若函數(shù)有唯一零點(diǎn),用反證法可證明只有合題意.
試題解析:(1)
當(dāng)a>0時,由得
當(dāng)時, , 為單調(diào)增函數(shù);
當(dāng)時, , 為單調(diào)減函數(shù),
所以在上不為單調(diào)函數(shù)
當(dāng)時,由, 在為單調(diào)遞增函數(shù),
所以實數(shù)得取值范圍是。
(2)充分性:當(dāng)時, ,
令得
當(dāng)時, , 為單調(diào)增函數(shù),所以
當(dāng)時, , 為單調(diào)減函數(shù),所以
所以函數(shù)有唯一零點(diǎn)
必要性:設(shè)函數(shù)有唯一零點(diǎn),因為,所以,
因為,由(1)知,當(dāng)且僅當(dāng)時,取得最小值
記,所以
令得
當(dāng)時, , 為單調(diào)減函數(shù),
即
因為,且,
所以在內(nèi)有零點(diǎn),與題意相矛盾。
當(dāng)時,同理有
因為,存在- ,有
所以在內(nèi)有零點(diǎn),與題意相矛盾。
故
綜上, 有唯一零點(diǎn)的充要條件是。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的月固定成本為10(萬元),每生產(chǎn)件,需另投入成本為(萬元).當(dāng)月產(chǎn)量不足30件時, (萬元);當(dāng)月產(chǎn)量不低于30件時, (萬元).因設(shè)備問題,該廠月生產(chǎn)量不超過50件.現(xiàn)已知此商品每件售價為5萬元,且該廠每個月生產(chǎn)的商品都能當(dāng)月全部銷售完.
(1)寫出月利潤(萬元)關(guān)于月產(chǎn)量(件)的函數(shù)解析式;
(2)當(dāng)月產(chǎn)量為多少件時,該廠所獲月利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的極值;
(2)當(dāng)時,若直線: 與曲線沒有公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四個命題:
①在回歸分析中, 可以用來刻畫回歸效果, 的值越大,模型的擬合效果越好;
②在獨(dú)立性檢驗中,隨機(jī)變量的值越大,說明兩個分類變量有關(guān)系的可能性越大;
③在回歸方程中,當(dāng)解釋變量每增加1個單位時,預(yù)報變量平均增加1個單位;
④兩個隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于1;
其中真命題是:
A. ①④ B. ②④ C. ①② D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某智能手機(jī)制作完成之后還需要依次通過三道嚴(yán)格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為,,,每道程序是相互獨(dú)立的,且一旦審核不通過就停止審核,每部手機(jī)只有三道程序都通過才能出廠銷售.
(1)求審核過程中只通過兩道程序的概率;
(2)現(xiàn)有3部該智能手機(jī)進(jìn)入審核,記這3部手機(jī)可以出廠銷售的部數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1) 時,證明: ;
(2)當(dāng)時,直線和曲線切于點(diǎn),求實數(shù)的值;
(3)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在心理學(xué)研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者, , , , , 和4名, , , ,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.
(Ⅰ)求接受甲種心理暗示的志愿者中包含但不包含的頻率.
(Ⅱ)用表示接受乙種心理暗示的女志愿者人數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)雞場為檢驗?zāi)撤N藥物預(yù)防某種疾病的效果,取100只雞進(jìn)行對比試驗,得到如下列聯(lián)表(表中部分?jǐn)?shù)據(jù)丟失, , , , , , 表示丟失的數(shù)據(jù)):
工作人員記得.
(1)求出列聯(lián)表中數(shù)據(jù), , , , , 的值;
(2)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為藥物有效?
參考公式: ,其中
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三名學(xué)生參加某電視臺舉辦的國學(xué)知識競賽,在競賽中,他們的出場順序被組委會隨機(jī)安排.
(1)求甲、乙、丙三名學(xué)生在這次國學(xué)知識競賽中,甲被安排第一個出場的概率;
(2)求甲、乙、丙三名學(xué)生在這次國學(xué)知識競賽中,甲比乙出場的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com