【題目】下列命題中
①函數(shù)f(x)=( x的遞減區(qū)間是(﹣∞,+∞);
②若函數(shù)f(x)= ,則函數(shù)定義域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正確命題的序號為

【答案】①③
【解析】解:①∵0 1,∴函數(shù)f(x)=( x的遞減區(qū)間是(﹣∞,+∞),正確;
②若函數(shù)f(x)= ,則x﹣1≥0,x≥1,∴函數(shù)定義域是[1,+∞),不正確;
③已知(x,y)在映射f下的象是(x+y,x﹣y),3+1=4,3﹣1=2,那么(3,1)在映射f下的象是(4,2),正確.
所以答案是:①③.
【考點(diǎn)精析】掌握映射的相關(guān)定義是解答本題的根本,需要知道對于映射f:A→B來說,則應(yīng)滿足:(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象;注意:映射是針對自然界中的所有事物而言的,而函數(shù)僅僅是針對數(shù)字來說的.所以函數(shù)是映射,而映射不一定的函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.

(1)估計(jì)六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知一個(gè)圓過直線與圓的兩個(gè)交點(diǎn),且面積最小,求此圓的方程;

(2)拋物線的頂點(diǎn)在原點(diǎn),以橢圓的右焦點(diǎn)為焦點(diǎn),過點(diǎn)的直線與拋物線有且僅有一個(gè)公共點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】莫數(shù)學(xué)建模興趣小組測量某移動(dòng)信號塔的高度(單位: ),如圖所示,垂直放置的標(biāo)桿的高度,仰角, .

(Ⅰ)該小組已經(jīng)測得一組的值, ,請推測的值;

(Ⅱ)該小組對測得的多組數(shù)據(jù)分析后,發(fā)現(xiàn)適當(dāng)調(diào)節(jié)標(biāo)桿到信號塔的距離(單位: ),使得較大時(shí),可以提高信號塔測量的精確度,若信號塔高度為,試問為多大時(shí), 最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)械廠今年進(jìn)行了五次技能考核,其中甲、乙兩名技術(shù)骨干得分的平均分相等,成績統(tǒng)計(jì)情況如莖葉圖所示(其中09的某個(gè)整數(shù))

1)若該廠決定從甲乙兩人中選派一人去參加技能培訓(xùn),從成績穩(wěn)定性角度考慮,你認(rèn)為誰去比較合適?

2)若從甲的成績中任取兩次成績作進(jìn)一步分析,在抽取的兩次成績中,求至少有一次成績在(90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為xy,z,用綜合指標(biāo)Sxyz評價(jià)該產(chǎn)品的等級.若S≤4, 則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號

A1

A2

A3

A4

A5

質(zhì)量指標(biāo)

(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號

A6

A7

A8

A9

A10

質(zhì)量指標(biāo)

(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;

(2)在該樣本的一等品中, 隨機(jī)抽取2件產(chǎn)品,

() 用產(chǎn)品編號列出所有可能的結(jié)果;

() 設(shè)事件B為“在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標(biāo)S都等于4, 求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 畫出函數(shù)g(x)圖象;
(3)求函數(shù)g(x)在[﹣3,1]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,
(1)求實(shí)數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù);
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達(dá)式并判斷其奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,點(diǎn) 的極坐標(biāo)是,曲線 的極坐標(biāo)方程為.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為 軸的正半軸建立平面直角坐標(biāo)系,斜率為 的直線 經(jīng)過點(diǎn).

(1)寫出直線 的參數(shù)方程和曲線 的直角坐標(biāo)方程;

(2)若直線 和曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊答案