A. | $\frac{π}{2}$ | B. | $\frac{π}{4}$ | C. | 2π | D. | π |
分析 直接利用三角函數(shù)的積化和差公式化簡,再由周期公式求得周期.
解答 解:y=sin(2x+$\frac{π}{6}$)sin(2x+$\frac{2π}{3}$)
=$-\frac{1}{2}[cos(2x+\frac{π}{6}+2x+\frac{2π}{3})-cos(2x+\frac{π}{6}-2x-\frac{2π}{3})]$
=$-\frac{1}{2}cos(4x+\frac{5π}{6})+\frac{1}{2}cos(-\frac{π}{2})$
=$-\frac{1}{2}cos(4x+\frac{5π}{6})$.
∴$T=\frac{2π}{4}=\frac{π}{2}$.
故選:A.
點評 本題考查三角函數(shù)的積化和差公式,考查了三角函數(shù)周期的求法,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若$\overrightarrow{a}$∥$\overrightarrow$,則向量$\overrightarrow{a}$和$\overrightarrow$是相反向量 | |
B. | 已知非零向量$\overrightarrow{a}$與$\overrightarrow$同向,則$\overrightarrow{a}$-$\overrightarrow$必與$\overrightarrow{a}$是平行向量 | |
C. | 若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow$=λ$\overrightarrow{a}$(λ∈R) | |
D. | 若$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$| |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com