【題目】某學(xué)校為了調(diào)查高一年級(jí)學(xué)生的體育鍛煉情況,從甲、乙、丙3個(gè)班中,按分層抽樣的方法獲得了部分學(xué)生一周的鍛煉時(shí)間(單位:h),數(shù)據(jù)如下,
甲 | 6 | 6.5 | 7 | 7.5 | 8 | |||
乙 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
丙 | 3 | 4.5 | 6 | 7.5 | 9 | 10.5 | 12 | 13.5 |
(1)求三個(gè)班中學(xué)生人數(shù)之比;
(2)估計(jì)這個(gè)學(xué)校高一年級(jí)學(xué)生中,一周的鍛煉時(shí)間超過10h的百分比;
(3)估計(jì)這個(gè)學(xué)校高一年級(jí)學(xué)生一周的平均鍛煉時(shí)間.
【答案】(1)(2)25%(3)8.2h
【解析】
(1)樣本中人數(shù)比例與總體中人數(shù)比例相等;
(2)求出樣本中一周的鍛煉時(shí)間超過10h的人數(shù),求得比例,再估計(jì)年段的比例;
(3)求出樣本的平均數(shù),從而估計(jì)年段的平均數(shù).
(1)三個(gè)班中學(xué)生人數(shù)之比為.
(2)樣本中一周的鍛煉時(shí)間超過10h的有5個(gè),
因此一周的鍛煉時(shí)間超過10h的百分比為.
估計(jì)該校高一年級(jí)學(xué)生中,一周的鍛煉時(shí)間超過10h的百分比為25%.
(3)樣本中甲、乙、丙三個(gè)班級(jí)的平均鍛煉時(shí)間分別為7h,9h,8.25h,
則樣本平均數(shù)為.
估計(jì)該校高一年級(jí)學(xué)生一周的平均鍛煉時(shí)間為8.2h.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型水果超市每天以元/千克的價(jià)格從水果基地購進(jìn)若干水果,然后以元/千克的價(jià)格出售,若有剩余,則將剩下的水果以元/千克的價(jià)格退回水果基地,為了確定進(jìn)貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:
日需求量 | |||||||
頻數(shù) |
以天記錄的各日需求量的頻率代替各日需求量的概率.
(1)求該超市水果日需求量(單位:千克)的分布列;
(2)若該超市一天購進(jìn)水果千克,記超市當(dāng)天水果獲得的利潤為(單位:元),求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時(shí)生產(chǎn)內(nèi)徑為的一種零件,為了對(duì)兩人的生產(chǎn)質(zhì)量進(jìn)行評(píng)比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱中,,平面底面,點(diǎn)、D分別是線段、BC的中點(diǎn).
(1)求證:;
(2)求證:AD//平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:與軸負(fù)半軸的交點(diǎn)為A,點(diǎn)P在直線l:上,過點(diǎn)P作圓O的切線,切點(diǎn)為T.
(1)若a=8,切點(diǎn),求直線AP的方程;
(2)若PA=2PT,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P—ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
(Ⅰ)證明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在點(diǎn)F,使PB⊥平面DEF?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,BA=BC=,,在菱形BCDE中,,AE=.
(1)求證:平面ABC平面AEC;
(2)設(shè)直線CE與平面ABE所成的角為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮 讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(2)預(yù)測(cè)該路口 9月份的不“禮讓斑馬線”違章駕駛員人數(shù);
(3)若從表中3、4月份分別抽取4人和2人,然后再從中任選2 人進(jìn)行交規(guī)調(diào)查,求抽到的兩人恰好來自同一月份的概率.
參考公式: , .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com