某旅游點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費(fèi)用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費(fèi)后的所得).
(1)求函數(shù)y=f(x)的解析式及定義域;
(2)試問日凈收入最多時(shí)每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?
解:(1)當(dāng)x≤6時(shí),y=50x-115,令50x-115>0,解得x>2.3.
∵x∈N,∴x≥3,∴3≤x≤6,且x∈N.
當(dāng)6<x≤20時(shí),y=[50-3(x-6)]x-115=-3x
2+68x-115
綜上可知
(2)當(dāng)3≤x≤6,且x∈N時(shí),∵y=50x-115是增函數(shù),
∴當(dāng)x=6時(shí),y
max=185元.
當(dāng)6<x≤20,x∈N時(shí),y=-3x
2+68x-115=
,
∴當(dāng)x=11時(shí),y
max=270元.
綜上所述,當(dāng)每輛自行車日租金定在11元時(shí)才能使日凈收入最多,為270元.
分析:(1)函數(shù)y=f(x)=出租自行車的總收入-管理費(fèi);當(dāng)x≤6時(shí),全部租出;當(dāng)6<x≤20時(shí),每提高1元,租不出去的就增加3輛;所以要分段求出解析式;
(2)由函數(shù)解析式是分段函數(shù),在每一段內(nèi)求出函數(shù)最大值,比較得出函數(shù)的最大值.
點(diǎn)評(píng):本題用分段函數(shù)模型考查了一次函數(shù),二次函數(shù)的性質(zhì)與應(yīng)用,是基礎(chǔ)題.
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年浙江省金華市永康市明珠學(xué)校高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
某旅游點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費(fèi)用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費(fèi)后的所得).
(1)求函數(shù)y=f(x)的解析式及定義域;
(2)試問日凈收入最多時(shí)每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?
查看答案和解析>>