(本小題滿分12分)
NBA總決賽采用“7場4勝制”,由于NBA有特殊的政策和規(guī)則,能進(jìn)入決賽的球隊(duì)實(shí)力都較強(qiáng),因此可以認(rèn)為,兩個隊(duì)在每一場比賽中取勝的概率相等。根據(jù)不完全統(tǒng)計(jì),主辦一場決賽,每一方組織者有望通過出售電視轉(zhuǎn)播權(quán)、門票及零售商品、停車費(fèi)、廣告費(fèi)等收入獲取收益2000萬美元(1)求比賽場數(shù)的分布列;(2)求雙方組織者通過比賽獲得總收益的數(shù)學(xué)期望。
(1)的分布列為:
|
4 |
5 |
6 |
7 |
P |
|
|
|
|
(2)組織者收益的數(shù)學(xué)期望11625萬美元。
【解析】本題考查離散型隨機(jī)變量的分布列和期望,求離散型隨機(jī)變量的分布列和期望是近年來理科高考必出的一個問題,題目做起來不難,運(yùn)算量也不大,但是要注意解題格式.
(1)所需比賽場數(shù)X是隨機(jī)變量,其所有可能取值為4,5,6,7,根據(jù)兩個隊(duì)在每一場比賽中取勝的概率相等,得到變量 符合獨(dú)立重復(fù)試驗(yàn),根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式寫出分布列.
(2)根據(jù)上一問做出的X的分布列,寫出期望的表示式,做出結(jié)果,根據(jù)一場收入獲取收益2 000萬美元,得到組織者收益的數(shù)學(xué)期望.
解:比賽場數(shù)是隨機(jī)變量,其可取值為4、5、6、7,即,=4、5、6、7,
-------------------1分
依題意知:最終獲勝隊(duì)在第場比賽獲勝后結(jié)束比賽,必在前面—1場中獲勝3場,從而,=,=4、5、6、7, --------------------5分
(1)的分布列為:
|
4 |
5 |
6 |
7 |
P |
|
|
|
|
-------------------9分
(2)所需比賽場數(shù)的數(shù)學(xué)期望為,
故組織者收益的數(shù)學(xué)期望為2000=11625萬美元------------------11分
答:組織者收益的數(shù)學(xué)期望11625萬美元。 -----------------12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com