化簡(jiǎn)求值.

(1)log2+log212-log242-1;

(2)(lg2)2+lg2·lg50+lg25;

(3)(log32+log92)·(log43+log83).

(1)(2)2(3)


解析:

(1)原式=log2+log212-log2-log22

=log2

(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.

(3)原式=(

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項(xiàng)式.
對(duì)于cos3x,我們有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可見cos3x可以表示為cosx的三次多項(xiàng)式.
一般地,存在一個(gè)n次多項(xiàng)式Pn(t),使得cosnx=Pn(cosx),這些多項(xiàng)式Pn(t)稱為切比雪夫(P.L.Tschebyscheff)多項(xiàng)式.
(1)請(qǐng)嘗試求出P4(t),即用一個(gè)cosx的四次多項(xiàng)式來(lái)表示cos4x.
(2)化簡(jiǎn)cos(60°-θ)cos(60°+θ)cosθ,并利用此結(jié)果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)Q(x,y)位于直線x=-3右側(cè),且到點(diǎn)F(-1,0)與到直線x=-3的距離之和等于4.
(1)求動(dòng)點(diǎn)Q(x,y)的坐標(biāo)之間滿足的關(guān)系式,并化簡(jiǎn)且指出橫坐標(biāo)x的范圍;
(2)設(shè)(1)中的關(guān)系式表示的曲線為C,若直線l過點(diǎn)M(1,0)且交曲線C于不同的兩點(diǎn)A、B,
    ①求直線l的斜率的取值范圍;
    ②若點(diǎn)P滿足
FP
=
1
2
(
FA
+
FB
)
,且
EP
.
AB
=0
,其中點(diǎn)E的坐標(biāo)為(x0,0)試求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項(xiàng)式.
對(duì)于cos3x,我們有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可見cos3x可以表示為cosx的三次多項(xiàng)式.
一般地,存在一個(gè)n次多項(xiàng)式Pn(t),使得cosnx=Pn(cosx),這些多項(xiàng)式Pn(t)稱為切比雪夫(P.L.Tschebyscheff)多項(xiàng)式.
(1)請(qǐng)嘗試求出P4(t),即用一個(gè)cosx的四次多項(xiàng)式來(lái)表示cos4x.
(2)化簡(jiǎn)cos(60°-θ)cos(60°+θ)cosθ,并利用此結(jié)果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知曲線上動(dòng)點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù)

(1)求曲線的軌跡方程;

(2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;

(3)以曲線的左頂點(diǎn)為圓心作圓,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時(shí)圓的方程.

【解析】第一問利用(1)過點(diǎn)作直線的垂線,垂足為D.

代入坐標(biāo)得到

第二問當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;

當(dāng)直線l的斜率為k時(shí),;,化簡(jiǎn)得

第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱,設(shè),, 不妨設(shè)

由于點(diǎn)M在橢圓C上,所以

由已知,則

,

由于,故當(dāng)時(shí),取得最小值為

計(jì)算得,,故,又點(diǎn)在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案