設(shè)函數(shù),若對(duì)任意給定的,都存在唯一的,滿(mǎn)足,則正實(shí)數(shù)的最小值是(   )

A.B.C.2D.4

A

解析試卷分析:首先寫(xiě)出f(f(x))表達(dá)式,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,考慮到題目說(shuō)的要求x的唯一性,即當(dāng)取某個(gè)y值時(shí),f(f(x))的值只能落在三段區(qū)間的一段,而不能落在其中的兩段或者三段內(nèi)。因此我們要先求出f(f(x))在每段區(qū)間的值域。當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí), .從中可發(fā)現(xiàn),上面兩段區(qū)間的值包含在最后一段區(qū)間內(nèi),換一句話就是說(shuō)假如f(f(x))取在小于等于1的范圍內(nèi)的任何一個(gè)值,則必有兩個(gè)x與之對(duì)應(yīng)。因此,考慮到x的唯一性,則只有使得f(f(x))>1,因此題目轉(zhuǎn)化為當(dāng)y>2時(shí),恒有。因此令,題目轉(zhuǎn)化為y>2時(shí),恒有g(shù)(y)>0,又g(y)=(2ay-1)(ay+1),為了要使其大于0,則,考慮到題目要求a的正實(shí)數(shù),則ay<-1不考慮。因此,在y大于2的情況下恒成立。因此,所以a的最小正實(shí)數(shù)為 (因?yàn)閥本身取不到2,因此a可以取).
考點(diǎn):1.指數(shù)與對(duì)數(shù)的運(yùn)算;2.不等式恒成立問(wèn)題;3.函數(shù)的值域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

函數(shù)的零點(diǎn)個(gè)數(shù)為(     )

A.0B.1C.2D.無(wú)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)則的大小關(guān)系是 (  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若點(diǎn)在函數(shù)的圖象上,則函數(shù)的值域?yàn)椋?nbsp;    )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知函數(shù)滿(mǎn)足,且是偶函數(shù),當(dāng)時(shí),,若在區(qū)間內(nèi),函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

函數(shù)的零點(diǎn)所在的區(qū)間是(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知a>0,且a≠1,loga3<1,則實(shí)數(shù)a的取值范圍是(  )

A.(0,1)B.(0,1)∪(3,+∞)
C.(3,+∞)D.(1,2)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)f(x)與g(x)是定義在同一區(qū)間[ab]上的兩個(gè)函數(shù),若函數(shù)yf(x)-g(x)在x∈[ab]上有兩個(gè)不同的零點(diǎn),則稱(chēng)f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱(chēng)為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-3x+4與g(x)=2xm在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍是  (  ).

A. B.[-1,0] C.(-∞,-2] D. 

查看答案和解析>>

同步練習(xí)冊(cè)答案