設(shè)f(x)=f數(shù)學(xué)公式lgx+1,則f(10)=________.

1
分析:令x=10和x=分別代入f(x)=f( )lgx+1,列出兩個(gè)方程利用消元法求出f(10).
解答:令x=10,代入f(x)=f( )lgx+1得,
f(10)=f( )lg10+1 ①
令x=得,f( )=f(10)lg +1 ②,
聯(lián)立①②,解得f(10)=1.
故答案為:1.
點(diǎn)評(píng):本題考查了利用方程思想求函數(shù)的值,由題意列出方程,構(gòu)造方程組用消元法求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+x-l,g(x)=ebx,其中P為自然對(duì)數(shù)的底.
(1)當(dāng)b=-1時(shí),求函數(shù)F(x)=f(x)•g(x)的極大、極小值;
(2)當(dāng)b=-1時(shí),求證:函數(shù)G(x)=f(x)+g(x)有且只有一個(gè)零點(diǎn);
(3)若不等式g(x)≥ex對(duì)?x>0恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2+bx(a>0),且f′(1)=0
(1)試用含有a的式子表示b,并求f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)f(x)的最大值為g(a),試證明不等式:g(a)>ln(1+
a
2
)-1
(3)首先閱讀材料:對(duì)于函數(shù)圖象上的任意兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)圖象上存在點(diǎn)M(x0,y0)(x0∈(x1,x2)),使得f(x)在點(diǎn)M處的切線l∥AB,則稱(chēng)AB存在“相依切線”特別地,當(dāng)x0=
x1+x2
2
時(shí),則稱(chēng)AB存在“中值相依切線”.請(qǐng)問(wèn)在函數(shù)f(x)的圖象上是否存在兩點(diǎn)A(x1,y1),B(x2,y2),使得AB存在“中值相依切線”?若存在,求出一組A、B的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)當(dāng)a=1時(shí),求f(x)的解析式;
(2)在(1)的條件下,若方程f(x)-m=0有4個(gè)不等的實(shí)根,求實(shí)數(shù)m的范圍;
(3)當(dāng)2≤a<9時(shí),設(shè)f(x)=f2(x)所對(duì)應(yīng)的自變量取值區(qū)間的長(zhǎng)度為l(閉區(qū)間[m,n]的長(zhǎng)度定義為n-m),試求l的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•順義區(qū)二模)對(duì)于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(diǎn)(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點(diǎn)P1為直線l:2x-y+2=0與x軸的交點(diǎn),點(diǎn)Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請(qǐng)問(wèn),是否存在一個(gè)定義域?yàn)镽的函數(shù)y=f(x)及一個(gè)α的值,使得h(x)=cosx,若存在請(qǐng)寫(xiě)出一個(gè)f(x)的解析式及一個(gè)α的值,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•樂(lè)山二模)設(shè)函數(shù)f(x)=ax3-2bx2+cx+4d(a,b,c,d∈R)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且x=1時(shí),f(x)取得極小值-
23

(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[-1,1]時(shí),函數(shù)f(x)的圖象上是否存在兩點(diǎn),使得過(guò)此兩點(diǎn)處的切線相互垂直?試說(shuō)明你的結(jié)論;
(3)設(shè)f(x)表示的曲線為G,過(guò)點(diǎn)(1,-10)作曲線G的切線l,求l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案