【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2sin θ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,),求|PA|+|PB|.
【答案】(1) x2+(y-)2=5(2) 3.
【解析】分析:(Ⅰ)由圓C的方程為ρ=2sin θ,能求出圓的直角方程;(Ⅱ)將l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得t2-3t+4=0,再由點(diǎn)P的坐標(biāo)為(3,),能求出|PA|+|PB|.
詳解:
(1)由ρ=2sin θ,得x2+y2-2y=0,
即x2+(y-)2=5.
(2)將l的參數(shù)方程代入圓C的直角坐標(biāo)方程,
得(3-t)2+(t)2=5,
即t2-3t+4=0.
由于Δ=(3)2-4×4=2>0,故可設(shè)t1,t2是上述方程的兩實(shí)根,
所以
又直線l過點(diǎn)P(3,),
故由上式及t的幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2=3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過點(diǎn).設(shè)為橢圓的右焦點(diǎn), 為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),連結(jié)并延長,分別交橢圓于兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線的斜率分別為,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:曲線C上的點(diǎn)到直線l的距離的最小值稱為曲線C到直線l的距離,已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實(shí)數(shù)a= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體ABCDEF中,點(diǎn)O是矩形ABCD的對角線的交點(diǎn),面CDE是等邊三角形,棱。
(1)證明FO∥平面CDE;
(2)設(shè)BC=CD,證明EO⊥平面CDE。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n∈R,若直線(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是( )
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,點(diǎn)Q在棱AB上.
(1)證明:平面.
(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程有實(shí)數(shù)根.
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時,方程的根為,求代數(shù)式的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,若函數(shù),,的“新駐點(diǎn)”分別為,則的大小關(guān)系為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com