【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2sin θ.

(1)求圓C的直角坐標(biāo)方程;

(2)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,),求|PA|+|PB|.

【答案】(1) x2+(y)2=5(2) 3.

【解析】分析:Ⅰ)由圓C的方程為ρ=2sin θ,能求出圓的直角方程;Ⅱ)將l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得t2-3t+4=0,再由點(diǎn)P的坐標(biāo)為(3,),能求出|PA|+|PB|.

詳解:

(1)由ρ=2sin θ,得x2y2-2y=0,

x2+(y)2=5.

(2)將l的參數(shù)方程代入圓C的直角坐標(biāo)方程,

得(3-t)2+(t)2=5,

t2-3t+4=0.

由于Δ=(3)2-4×4=2>0,故可設(shè)t1t2是上述方程的兩實(shí)根,

所以

又直線l過(guò)點(diǎn)P(3,),

故由上式及t的幾何意義得|PA|+|PB|=|t1|+|t2|=t1t2=3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過(guò)點(diǎn).設(shè)為橢圓的右焦點(diǎn), 為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),連結(jié)并延長(zhǎng),分別交橢圓于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線的斜率分別為,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是邊長(zhǎng)為2的正三角形,平面,

(1)求證:平面平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:曲線C上的點(diǎn)到直線l的距離的最小值稱為曲線C到直線l的距離,已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實(shí)數(shù)a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在五面體ABCDEF中,點(diǎn)O是矩形ABCD的對(duì)角線的交點(diǎn),面CDE是等邊三角形,棱

(1)證明FO∥平面CDE;

(2)設(shè)BC=CD,證明EO⊥平面CDE。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m,n∈R,若直線(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是(
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,,點(diǎn)Q在棱AB上.

(1)證明:平面.

(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程有實(shí)數(shù)根.

1)求實(shí)數(shù)m的取值范圍;

2)當(dāng)m=2時(shí),方程的根為,求代數(shù)式的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,若函數(shù),的“新駐點(diǎn)”分別為,則的大小關(guān)系為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案