已知函數(shù)f(x)的定義域是(0,+∞),當(dāng)x>1時(shí),f(x)<0,且f(x•y)=f(x)+f(y).
(Ⅰ)證明f(x)在定義域上是減函數(shù);
(Ⅱ)如果f(
3
3
)=1
,求滿足不等式f(x)-f(
1
x-2
)≥-2
的x的取值范圍.
分析:(1)要掌握定義法證明單調(diào)性的前提是x1<x2,判斷f(x2)<f(x1)即可,準(zhǔn)確構(gòu)造條件當(dāng)x>1時(shí),f(x)<0,取x1,x2∈(0,+∞),且x1<x2,則  
x2
x1
>1
,進(jìn)而得出結(jié)論;
(2)要利用第一問的結(jié)論,加上條件f(x•y)=f(x)+f(y),利用單調(diào)性即可解出答案.
解答:解:(Ⅰ)任取x1,x2∈(0,+∞),且x1<x2
則  
x2
x1
>1
,∴f(
x2
x1
)<0.
(2分)
又f(x•y)=f(x)+f(y),
f(x1)+f(
x2
x1
)=f(x2)
,∴f(x2)-f(x1)=f(
x2
x1
)<0
,(4分)
∴f(x2)<f(x1),∴f(x)在定義域內(nèi)是減函數(shù).(6分)
(Ⅱ)由已知f(x•y)=f(x)+f(y),
可得∴2f(
3
3
)=f(
3
3
)+f(
3
3
)=f(
1
3
)=2
.(8分)f(x)-f(
1
x-2
)≥-2
,
f(x)+2=f(x)+f(
1
3
)=f(
x
3
)≥f(
1
x-2
)
,(10分)
∵f(x)在定義域內(nèi)是減函數(shù),
1
3
x≤
1
x-2
x>0
x-2>0
∴2<x≤3.
(12分)
點(diǎn)評:本題要掌握定義法證明單調(diào)性的前提是x1<x2,判斷f(x2),f(x1)的大;另外如果第一問無法準(zhǔn)確得出,可以直接將結(jié)論應(yīng)用于第二問.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有(  )個.
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個根,則實(shí)數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長度是一個定值,則AB的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
(。┳C明:a=b;
(ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案